1. Pretreatment metastatic growth rate determines clinical outcome of advanced melanoma patients treated with anti-PD-1 antibodies: a multicenter cohort study.
- Author
-
Wagner NB, Lenders MM, Kühl K, Reinhardt L, André F, Dudda M, Ring N, Ebel C, Stäger R, Zellweger C, Lang R, Paar M, Gussek P, Richtig G, Stürmer SH, Kimeswenger S, Oellinger A, Forschner A, Leiter U, Weide B, Gassenmaier M, Schraag A, Klumpp B, Hoetzenecker W, Berking C, Richtig E, Ziemer M, Mangana J, Terheyden P, Loquai C, Nguyen VA, Gebhardt C, Meier F, Diem S, Cozzio A, Flatz L, Röcken M, Garbe C, and Eigentler TK
- Subjects
- Antibodies, Monoclonal, Humanized adverse effects, Europe, Female, Humans, Immune Checkpoint Inhibitors adverse effects, Male, Melanoma diagnostic imaging, Melanoma immunology, Melanoma secondary, Middle Aged, Neoplasm Staging, Nivolumab adverse effects, Predictive Value of Tests, Programmed Cell Death 1 Receptor immunology, Reproducibility of Results, Retrospective Studies, Risk Assessment, Risk Factors, Skin Neoplasms diagnostic imaging, Skin Neoplasms immunology, Skin Neoplasms pathology, Time Factors, Treatment Outcome, Antibodies, Monoclonal, Humanized therapeutic use, Cell Proliferation, Immune Checkpoint Inhibitors therapeutic use, Melanoma drug therapy, Nivolumab therapeutic use, Programmed Cell Death 1 Receptor antagonists & inhibitors, Skin Neoplasms drug therapy, Tomography, X-Ray Computed
- Abstract
Background: Checkpoint inhibitors revolutionized the treatment of metastatic melanoma patients. Although tumor burden and lactate dehydrogenase (LDH) are associated with overall survival (OS), the impact of tumor growth kinetics remains elusive and in part contradictory. The aims of this study were to develop a novel simple and rapid method that estimates pretreatment metastatic growth rate (MGR) and to investigate its prognostic impact in melanoma patients treated with antiprogrammed death receptor-1 (PD-1) antibodies., Methods: MGR was assessed in three independent cohorts of a total of 337 unselected consecutive metastasized stage IIIB-IV melanoma patients (discovery cohort: n=53, confirmation cohort: n=126, independent multicenter validation cohort: n=158). MGR was computed during the pretreatment period before initiation of therapy with anti-PD-1 antibodies nivolumab or pembrolizumab by measuring the increase of the longest diameter of the largest target lesion. Tumor doubling time served as quality control. Kaplan-Meier analysis and univariable as well as multivariable Cox regression were used to examine the prognostic impact of MGR., Results: Pretreatment MGR >3.9 mm/month was associated with impaired OS in the discovery cohort (HR 6.19, 95% CI 2.92 to 13.10, p<0.0001), in the confirmation cohort (HR 3.62, 95% CI 2.19 to 5.98, p<0.0001) and in the independent validation cohort (HR 2.57, 95% CI 1.56 to 4.25, p=0.00023). Prior lines of systemic treatment did not influence the significance of MGR. Importantly, the prognostic impact of MGR was independent of total tumor burden, diameter of the largest metastasis, number of prior lines of systemic treatment, LDH, as well as liver and brain metastasis (discovery and confirmation cohorts: both p<0.0001). Superiority of MGR compared with these variables was confirmed in the independent multicenter validation cohort (HR 2.92, 95% CI 1.62 to 5.26, p=0.00036)., Conclusions: High pretreatment MGR is an independent strong prognostic biomarker associated with unfavorable survival of melanoma patients receiving anti-PD-1 antibodies. Further investigations are warranted to assess the predictive impact of MGR in distinct systemic therapeutic regimens., Competing Interests: Competing interests: NBW reports a consulting/advisory role for Sanofi and has received travel support from AbbVie and Amgen outside the submitted work. RL has received research funding from Bristol-Myers Squibb, Pierre Fabre and Roche, honoraria and travel support from Merck Sharp & Dohme and travel support from Amgen. AO is a consultant/advisory board member for MSD and Bristol-Myers Squibb. AF has received speaker’s honoraria from Bristol-Myers Squibb, MSD, Roche, and Novartis, is advisory board member for Roche and Novartis and received travel support from Roche, Novartis, and Bristol-Myers Squibb. UL is a consultant/advisory board member for and has received honoraria from MSD, Novartis, and Roche. MG is an advisory board member of Novartis and has received grants from Novartis outside the submitted work. CB has received speaker's honoraria and consultancy fees from Amgen, Bristol-Myers Squibb, Merck, MSD, Novartis, Pierre Fabre, Regeneron, Roche, and Sanofi-Aventis outside the submitted work, and has received travel support from Bristol-Myers Squibb. ER has received honoraria from and has a consultancy or advisory role for Amgen, Bayer, Bristol-Myers Squibb, MSD, Merck, Novartis, Pierre Fabre, Roche and Sanofi, reports speakers' bureau for Amgen, Bristol-Myers Squibb, MSD, Merck, Novartis, Pierre Fabre and Sanofi, received research funding (at the institution) from Amgen, Bristol-Myers Squibb, MSD, Novartis, Pierre Fabre and Roche, is a member of the research funding steering committee of Novartis, and received travel accommodations and/or expenses from Amgen, Bristol-Myers Squibb, MSD, Merck, Novartis, Pierre Fabre, Roche and Sanofi. JM has intermittent project focused consultant or advisory relationships with Merck/Pfizer, Merck Sharp & Dohme, Amgen, Novartis, Bristol-Myers Squibb and Pierre Fabre, and has received travel support from Ultrasun, L’Oreal, Merck Sharp & Dohme, Bristol-Myers Squibb and Pierre Fabre outside of the submitted work. PT has received honoraria and/or consultancy fees from Bristol-Myers Squibb, Curevac, Merck, MSD, Novartis, Pierre Fabre, Roche, and Sanofi outside the submitted work, and has received travel support from Bristol-Myers Squibb and Pierre-Fabre. CL is a consultant/advisory board member for and has received advisory board fees, speaker's fees and/or travel reimbursements from Roche, Pierre Fabre, Novartis, Bristol-Myers Squibb, Merck, MSD, Biontech, Almiral Hermal, Kyowa Kirin, Sun Pharma and Sanofi. VAN has received speaker’s honoraria and consultancy fees from Amgen, Bristol-Myers Squibb, GlaxoSmithKline, Merck Sharp & Dohme, Novartis, Roche, and Takeda outside of the submitted work. CGe has received personal speaker/advisory board fees from Amgen, Beiersdorf, BMS, MSD, Novartis, Pierre Fabre, Roche, Sun Pharma and Sanofi Genzyme. FM has received travel support or/and speaker’s fees or/and advisor’s honoraria by Novartis, Roche, BMS, MSD and Pierre Fabre, and research funding from Novartis and Roche. SD has received travel support from MSD. AC has received consultancy fees from AbbVie, BMS, Almirall, Amgen, Eli Lilly, Galderma, Janssen, Kyowa Kirin, Leo, Novartis, and Sanofi. LF reports grants from the Swiss National Science Foundation, Swiss Cancer League, Hookipa Pharma and Novartis Foundation as well as an advisory role for Novartis and Bristol-Myers Squibb. CGa has received grants and personal fees from Bristol-Myers Squibb, Roche, Novartis and personal fees from Amgen, MSD and Philogen outside the submitted work. TE is a consultant/advisory board member for Philogen, Bristol-Myers Squibb, Novartis, Roche and Sanofi. No other disclosures were reported., (© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.)
- Published
- 2021
- Full Text
- View/download PDF