1. Anaerobic degradation of 2,4,5-trichlorophenoxyacetic acid by enrichment cultures from freshwater sediments.
- Author
-
Al-Fathi H, Koch M, Lorenz WG, and Lechner U
- Subjects
- Anaerobiosis, Chloroflexi metabolism, Chlorophenols, Desulfitobacterium, Fresh Water, Germany, Halogenation, Herbicides, Phenols metabolism, Rivers, 2,4,5-Trichlorophenoxyacetic Acid metabolism, Biodegradation, Environmental, Water Pollutants, Chemical metabolism
- Abstract
The anaerobic biodegradation of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) was investigated using enrichment cultures from freshwater sediments at two different sites in the region of Halle, central Germany. 2,4,5-T and different organic acids or hydrogen were added as possible electron acceptor and electron donors, respectively. The primary enrichment cultures from Saale river sediment completely degraded 2,4,5-T to 3-chlorophenol (3-CP) (major product) and 3,4-dichlorophenol (3,4-DCP) during a 28-day incubation period. Subcultures showed ether cleavage of 2,4,5-T to 2,4,5-trichlorophenol and its stoichiometric dechlorination to 3-CP only in the presence of butyrate. In contrast, the primary enrichment culture from sediment of Posthorn pond dechlorinated 2,4,5-T to 2,5-dichlorophenoxyacetic acid (2,5-D), which, in the presence of butyrate, was degraded further to products such as 3,4-DCP, 2,5-DCP, and 3CP, indicating ether cleaving activities and subsequent dechlorination steps. Experiments with pure cultures of Dehalococcoides mccartyi and Desulfitobacterium hafniense demonstrated their specific dechlorination steps within the overall 2,4,5-T degradation pathways. The results indicate that the route and efficiency of anaerobic 2,4,5-T degradation in the environment depend heavily on the microorganisms present and the availability of slowly fermentable organic compounds.
- Published
- 2019
- Full Text
- View/download PDF