1. Dynamics of an Ongoing Wolbachia Spread in the European Cherry Fruit Fly, Rhagoletis cerasi (Diptera: Tephritidae).
- Author
-
Schebeck, Martin, Feldkirchner, Lukas, Stauffer, Christian, and Schuler, Hannes
- Subjects
FRUIT flies ,WOLBACHIA ,TEPHRITIDAE ,DIPTERA ,HIGHER order transitions ,ANASTREPHA ,RHIPICEPHALUS - Abstract
Numerous terrestrial arthropods are infected with the alphaproteobacterium Wolbachia. This endosymbiont is usually transmitted vertically from infected females to their offspring and can alter the reproduction of hosts through various manipulations, like cytoplasmic incompatibility (CI), enhancing its spread in new host populations. Studies on the spatial and temporal dynamics of Wolbachia under natural conditions are scarce. Here, we analyzed Wolbachia infection frequencies in populations of the European cherry fruit fly, Rhagoletis cerasi (L.), in central Germany—an area of an ongoing spread of the CI-inducing strain wCer2. In total, 295 individuals from 19 populations were PCR-screened for the presence of wCer2 and their mitochondrial haplotype. Results were compared with historic data to understand the infection dynamics of the ongoing wCer2 invasion. An overall wCer2 infection frequency of about 30% was found, ranging from 0% to 100% per population. In contrast to an expected smooth transition from wCer2-infected to completely wCer2-uninfected populations, a relatively scattered infection pattern across geography was observed. Moreover, a strong Wolbachia-haplotype association was detected, with only a few rare misassociations. Our results show a complex dynamic of an ongoing Wolbachia spread in natural field populations of R. cerasi. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF