1. Examining the Impact of SMAP Soil Moisture Retrievals on Short-Range Weather Prediction under Weakly and Strongly Coupled Data Assimilation with WRF-Noah.
- Author
-
LIAO-FAN LIN and ZHAOXIA PU
- Subjects
- *
WEATHER forecasting , *SOIL moisture , *METEOROLOGICAL research , *NUMERICAL weather forecasting , *ATMOSPHERIC temperature , *SURFACE states , *SURFACE analysis - Abstract
Remotely sensed soil moisture data are typically incorporated into numerical weather models under a framework of weakly coupled data assimilation (WCDA), with a land surface analysis scheme independent from the atmospheric analysis component. In contrast, strongly coupled data assimilation (SCDA) allows simultaneous correction of atmospheric and land surface states but has not been sufficiently explored with land surface soil moisture data assimilation. This study implemented a variational approach to assimilate the Soil Moisture Active Passive (SMAP) 9-km enhanced retrievals into the Noah land surface model coupled with the Weather Research and Forecasting (WRF) Model under a framework of both WCDA and SCDA. The goal of the study is to quantify the relative impact of assimilating SMAP data under different coupling frameworks on the atmospheric forecasts in the summer. The results of the numerical experiments during July 2016 show that SCDA can provide additional benefits on the forecasts of air temperature and humidity compared to WCDA. Over the U.S. Great Plains, assimilation of SMAP data under WCDA reduces a warm bias in temperature and a dry bias in humidity by 7.3% and 19.3%, respectively, while the SCDA case contributes an additional bias reduction of 2.2% (temperature) and 3.3% (humidity). WhileWCDAleads to a reduction of RMSE in temperature forecasts by 4.1%, SCDA results in additional reduction of RMSE by 0.8%. For the humidity, the reduction of RMSE is around 1% for both WCDA and SCDA. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF