1. Compositional variations and magma mixing in the 1991 eruptions of Hudson volcano, Chile.
- Author
-
Roberto Scasso and Jose-Antonio Naranjo
- Subjects
- *
VOLCANIC eruptions , *MAGMAS , *MIXING , *TRACHYANDESITE , *VOLCANIC ash, tuff, etc. - Abstract
Abstract  The August 1991 eruptions of Hudson volcano produced ~2.7 km3 (dense rock equivalent, DRE) of basaltic to trachyandesitic pyroclastic deposits, making it one of the largest historical eruptions in South America. Phase 1 of the eruption (P1, April 8) involved both lava flows and a phreatomagmatic eruption from a fissure located in the NW corner of the caldera. The paroxysmal phase (P2) began several days later (April 12) with a Plinian-style eruption from a different vent 4 km to the south-southeast. Tephra from the 1991 eruption ranges in composition from basalt (phase 1) to trachyandesite (phase 2), with a distinct gap between the two erupted phases from 54â60 wt% SiO2. A trend of decreasing SiO2 is evident from the earliest part of the phase 2 eruption (unit A, 63â65 wt% SiO2) to the end (unit D, 60â63 wt% SiO2). Melt inclusion data and textures suggest that mixing occurred in magmas from both eruptive phases. The basaltic and trachyandesitic magmas can be genetically related through both magma mixing and fractional crystallization processes. A combination of observed phase assemblages, inferred water content, crystallinity, and geothermometry estimates suggest pre-eruptive storage of the phase 2 trachyandesite at pressures between ~50â100 megapascal (MPa) at 972â±â26°C under water-saturated conditions (log fO2 â10.33 (±0.2)). It is proposed that rising P1 basaltic magma intersected the lower part of the P2 magma storage region between 2 and 3 km depth. Subsequent mixing between the two magmas preferentially hybridized the lower part of the chamber. Basaltic magma continued advancing towards the surface as a dyke to eventually be erupted in the northwestern part of the Hudson caldera. The presence of tachylite in the P1 products suggests that some of the magma was stalled close to the surface ( [ABSTRACT FROM AUTHOR]
- Published
- 2009