1. Oral hydroxycitrate supplementation enhances glycogen synthesis in exercised human skeletal muscle.
- Author
-
Cheng, I-Shiung, Huang, Shih-Wei, Lu, Hsang-Chu, Wu, Ching-Lin, Chu, Ying-Chieh, Lee, Shin-Da, Huang, Chih-Yang, and Kuo, Chia-Hua
- Subjects
RNA metabolism ,GLUCOSE metabolism ,TRADITIONAL medicine ,ANALYSIS of variance ,ANTIGENS ,BIOPSY ,BLOOD sugar ,CITRATES ,CROSSOVER trials ,CYCLING ,DIETARY supplements ,EXERCISE physiology ,FISHER exact test ,FRUIT ,GLYCOGEN ,INGESTION ,INSULIN ,INSULIN resistance ,PLACEBOS ,POLYMERASE chain reaction ,PROBABILITY theory ,RESEARCH funding ,STATISTICS ,WESTERN immunoblotting ,DATA analysis ,ERGOGENIC aids ,REPEATED measures design ,OXYGEN consumption ,REVERSE transcriptase polymerase chain reaction ,SKELETAL muscle - Abstract
Glycogen stored in skeletal muscle is the main fuel for endurance exercise. The present study examined the effects of oral hydroxycitrate (HCA) supplementation on post-meal glycogen synthesis in exercised human skeletal muscle. Eight healthy male volunteers (aged 22·0 (se 0·3) years) completed a 60-min cycling exercise at 70–75 % \dot {>V}O_{2\hairsp max} and received HCA or placebo in a crossover design repeated after a 7 d washout period. They consumed 500 mg HCA or placebo with a high-carbohydrate meal (2 g carbohydrate/kg body weight, 80 % carbohydrate, 8 % fat, 12 % protein) for a 3-h post-exercise recovery. Muscle biopsy samples were obtained from vastus lateralis immediately and 3 h after the exercise. We found that HCA supplementation significantly lowered post-meal insulin response with similar glucose level compared to placebo. The rate of glycogen synthesis with the HCA meal was approximately onefold higher than that with the placebo meal. In contrast, GLUT4 protein level after HCA supplementation was significantly decreased below the placebo level, whereas expression of fatty acid translocase (FAT)/CD36 mRNA was significantly increased above the placebo level. Furthermore, HCA supplementation significantly increased energy reliance on fat oxidation, estimated by the gaseous exchange method. However, no differences were found in circulating NEFA and glycerol levels with the HCA meal compared with the placebo meal. The present study reports the first evidence that HCA supplementation enhanced glycogen synthesis rate in exercised human skeletal muscle and improved post-meal insulin sensitivity. [ABSTRACT FROM PUBLISHER]
- Published
- 2012
- Full Text
- View/download PDF