1. Monitoring the Characteristics of Ecological Cumulative Effect Due to Mining Disturbance Utilizing Remote Sensing.
- Author
-
Li, Quansheng, Guo, Junting, Wang, Fei, and Song, Ziheng
- Subjects
LAND cover ,WATER vapor ,REMOTE sensing ,ATMOSPHERIC water vapor ,ENVIRONMENTAL monitoring ,LAND surface temperature ,COAL mining - Abstract
This study conducted land cover classification and inversion analysis to estimate land surface temperature, soil moisture, specific humidity, atmospheric water vapor density, and relative humidity using remote sensing and multi-source mining data. Using 1990–2020 data from the Shendong mining area in Inner Mongolia, China, the eco-environmental evolution and the ecological cumulative effects (ECE) of mining operations were characterized and analyzed at a long-term scale. The results show that while the eco-environment was generally stable, mining activities affected the eco-environment at the initial stage (1990–2000) to a certain degree. During the rapid development stage of coal mining, the eco-environment was severely damaged, and the ECE were significant at the temporal scale. The absolute value of the change rate of ecological parameters was increasing. Due to an increased focus on ecological restoration, starting in 2010, the environmental indicators gradually stabilized and the eco-environment improved considerably, ushering in a period of stability for coal mining activities. The absolute value of the change rate of ecological parameters became stable. Analysis of the change in eco-environmental indicators with distance and comparison to the contrast area showed the ECE characteristics from mining disturbance at the spatial scale. This study shows that remote sensing technology can be used to characterize the ECE from mining operations and analyze eco-environmental indicators, providing crucial information in support of ecological protection and restoration, particularly in coal mining areas. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF