1. A novel cyber-Resilient solar power forecasting model based on secure federated deep learning and data visualization.
- Author
-
Moradzadeh, Arash, Moayyed, Hamed, Mohammadi-Ivatloo, Behnam, Vale, Zita, Ramos, Carlos, and Ghorbani, Reza
- Subjects
- *
DEEP learning , *CONVOLUTIONAL neural networks , *SOLAR energy , *DATA visualization , *DATA privacy , *FORECASTING , *SOLAR radiation - Abstract
Improving the accuracy of photovoltaic (PV) power forecasting is crucial to ensure more effective use of energy resources. Improvements are especially important for regions for which historical solar radiation data do not exist. This paper proposes a cyber-secure forecasting model called federated deep learning (FDL) to forecast PV power generation in various regions across Iran. The training process in each client is done by a convolutional neural network (CNN). Then, a generalizable global supermodel is generated based on the features extracted in each client, which has the ability to generalize and forecast for regions where there is no training data. Preserve data privacy and ideal performance against cyber-attacks are prominent features of the proposed method. The use of the proposed method is illustrated with a case study for Iran. The proposed FDL network is designed with 9 clients and three different scenarios were developed to test the robustness of the suggested method. In the first scenario, the PV power generation forecasting is done via the proposed technique and other conventional methods. The performance accuracy (R 2) of the generated global supermodel in this scenario for PV power generation forecasting in the regions of Khomein, Meybod, Varzaneh, Taleghan, and Shiraz are obtained as 0.981, 0.989, 0.986, 0.983, and 0.987 respectively. However, it was observed that other conventional deep learning-based models such as CNN and long short-term memory were not able to provide any forecasting for these regions. The second scenario models the scaling attack as a specific pattern of false data injection attack, to evaluate the performance of forecasting models against the data integrity attack. In the third scenario, cyber-attack detection is performed based on data visualization and image processing procedures. The results presented in different scenarios emphasize the high accuracy and generalizability of the global cyber-secure supermodel in PV power generation forecasting in different regions of Iran. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF