1. Prokaryotic symbiont communities in three ascidian species introduced in both Ireland and New Zealand.
- Author
-
López-Legentil, Susanna, Palanisamy, Satheesh Kumar, Smith, Kirsty F., McCormack, Grace, and Erwin, Patrick M.
- Subjects
COLONIES (Biology) ,HOST specificity (Biology) ,SEA squirts ,MARINE bacteria ,RIBOSOMAL RNA ,SPECIES - Abstract
Ascidians or sea squirts are among the marine taxa with the most introduced species worldwide. These animals have a suite of biological characteristics that contribute to their successful establishment, including long reproductive seasons, rapid growth rates, and resistance to pollution. Here, we sequenced a fragment of the 16S ribosomal RNA gene to characterize symbiont diversity and host-specificity in the solitary species Syela clava and Ascidiella aspersa, and the colonial species Didemnum vexillum. Samples were collected from introduced populations in several marinas and mussel facilities around Ireland, and a marina in New Zealand. Two additional colonial species Botrylloides violaceus and Didemnum sp. were collected in Ireland, and ambient seawater was sampled from both countries for comparison. Data revealed a strong effect of host species and location on prokaryote symbiont composition, consistent with recent ascidian microbiome literature. However, a location effect did not manifest in alpha diversity metrics (e.g., the same ascidian species at different locations exhibited similar diversity) but was evident in beta diversity metrics (greater intra-specific differences across locations than within locations). Location effects were stronger than species effects only for the solitary species (i.e., A. aspersa from New Zealand was more similar to S. clava from New Zealand than to A. aspersa from Ireland). D. vexillum and A. aspersa hosted a high abundance of prokaryotic symbionts that were previously found in other ascidian species, while S. clava symbiotic community was more closely related to bacteria common in the marine environment. Further studies should aim to unravel host-microbe coevolutionary patterns and the microbial role in facilitating host establishment in different habitats. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF