12 results on '"Wolves genetics"'
Search Results
2. Comparative analysis of rare earth elements concentrations in domestic dogs and Apennine wolves of Central Italy: Influence of biological, nutritional, and lifestyle factors.
- Author
-
Bellocci M, Defourny SVP, Melai V, Scortichini G, Salini R, Di Bernardo G, Lomellini L, Coccaro A, Damiano A, Merola C, and Petrini A
- Subjects
- Animals, Male, Female, Italy, Europe, Environmental Biomarkers, Wolves genetics, Metals, Rare Earth analysis
- Abstract
Rare Earth Elements (REEs) are strategical elements playing a crucial role in the industry, especially in producing high-tech materials. Therefore, REEs are new contaminants of emerging concerns. However, due to the lack of exposure data on REE occurrence in environmental matrices, especially in European countries, it is still tricky to establish environmental background levels to assess the ecotoxicological risk related to REEs exposure. The present study aimed to evaluate the liver concentrations of REEs in domestic dogs (Canis lupus familiaris) and Apennine wolves (Canis lupus italicus) living in the Abruzzo region, Italy. Moreover, for the scope of the present study, the dog's group was divided according to their sex, age, lifestyle, and diet. Wolves were categorized concerning their sex and genetic characteristics. Liver samples from dogs and wolves were collected during diagnostic necropsies from carcasses, sample mineralization was performed by a microwave digestion system with a single reaction chamber, and simultaneous determination of the presence of REEs was performed by Inductively Coupled Plasma Mass Spectrometer (Q-ICP-MS) using standard mode for all rare earth elements except scandium (Sc) which was acquired in kinetic energy discrimination (KED) mode. Hepatic concentrations of REEs were statistically significantly higher in wolves compared to dogs. Moreover, significant differences in REEs concentrations arose also from the genetic type of wolf, since "pure wolves" had higher liver concentrations of REEs compared to wolf-dog hybrids. Female and adult dogs also showed elevated REEs compared to male and juvenile dogs, while no significant differences were demonstrated for dogs' diet and lifestyle. The results of the present study confirm the exposure of domestic and wild carnivores to REEs, showing also the ability of REEs to accumulate in carnivore livers, suggesting the potential role of this species as an alternative bioindicator., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
3. Population Dynamics in Italian Canids between the Late Pleistocene and Bronze Age.
- Author
-
Koupadi K, Fontani F, Ciucani MM, Maini E, De Fanti S, Cattani M, Curci A, Nenzioni G, Reggiani P, Andrews AJ, Sarno S, Bini C, Pelotti S, Caniglia R, Luiselli D, and Cilli E
- Subjects
- Animals, DNA Fragmentation, DNA, Mitochondrial genetics, Dogs, Domestication, Evolution, Molecular, Fossils, Genetic Variation genetics, Italy, Phylogeny, Population Dynamics, Wolves genetics, Canidae genetics
- Abstract
Dog domestication is still largely unresolved due to time-gaps in the sampling of regions. Ancient Italian canids are particularly understudied, currently represented by only a few specimens. In the present study, we sampled 27 canid remains from Northern Italy dated between the Late Pleistocene and Bronze Age to assess their genetic variability, and thus add context to dog domestication dynamics. They were targeted at four DNA fragments of the hypervariable region 1 of mitochondrial DNA. A total of 11 samples had good DNA preservation and were used for phylogenetic analyses. The dog samples were assigned to dog haplogroups A, C and D, and a Late Pleistocene wolf was set into wolf haplogroup 2. We present our data in the landscape of ancient and modern dog genetic variability, with a particular focus on the ancient Italian samples published thus far. Our results suggest there is high genetic variability within ancient Italian canids, where close relationships were evident between both a ~24,700 years old Italian canid, and Iberian and Bulgarian ancient dogs. These findings emphasize that disentangling dog domestication dynamics benefits from the analysis of specimens from Southern European regions.
- Published
- 2020
- Full Text
- View/download PDF
4. Choosy Wolves? Heterozygote Advantage But No Evidence of MHC-Based Disassortative Mating.
- Author
-
Galaverni M, Caniglia R, Milanesi P, Lapalombella S, Fabbri E, and Randi E
- Subjects
- Alleles, Animals, Genetics, Population, Genotype, Heterozygote, Italy, Microsatellite Repeats, Models, Genetic, Reproduction genetics, Wolves physiology, Genetic Fitness, Genetic Variation, Major Histocompatibility Complex genetics, Mating Preference, Animal, Wolves genetics
- Abstract
A variety of nonrandom mate choice strategies, including disassortative mating, are used by vertebrate species to avoid inbreeding, maintain heterozygosity and increase fitness. Disassortative mating may be mediated by the major histocompatibility complex (MHC), an important gene cluster controlling immune responses to pathogens. We investigated the patterns of mate choice in 26 wild-living breeding pairs of gray wolf (Canis lupus) that were identified through noninvasive genetic methods and genotyped at 3 MHC class II and 12 autosomal microsatellite (STR) loci. We tested for deviations from random mating and evaluated the covariance of genetic variables at functional and STR markers with fitness proxies deduced from pedigree reconstructions. Results did not show evidences of MHC-based disassortative mating. Rather we found a higher peptide similarity between mates at MHC loci as compared with random expectations. Fitness values were positively correlated with heterozygosity of the breeders at both MHC and STR loci, whereas they decreased with relatedness at STRs. These findings may indicate fitness advantages for breeders that, while avoiding highly related mates, are more similar at the MHC and have high levels of heterozygosity overall. Such a pattern of MHC-assortative mating may reflect local coadaptation of the breeders, while a reduction in genetic diversity may be balanced by heterozygote advantages., (© The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2016
- Full Text
- View/download PDF
5. Genome-wide signatures of population bottlenecks and diversifying selection in European wolves.
- Author
-
Pilot M, Greco C, vonHoldt BM, Jędrzejewska B, Randi E, Jędrzejewski W, Sidorovich VE, Ostrander EA, and Wayne RK
- Subjects
- Animals, Europe, Eastern, Genetic Drift, Italy, Principal Component Analysis, Spain, Wolves classification, X Chromosome genetics, Genetic Variation, Genetics, Population, Wolves genetics
- Abstract
Genomic resources developed for domesticated species provide powerful tools for studying the evolutionary history of their wild relatives. Here we use 61K single-nucleotide polymorphisms (SNPs) evenly spaced throughout the canine nuclear genome to analyse evolutionary relationships among the three largest European populations of grey wolves in comparison with other populations worldwide, and investigate genome-wide effects of demographic bottlenecks and signatures of selection. European wolves have a discontinuous range, with large and connected populations in Eastern Europe and relatively smaller, isolated populations in Italy and the Iberian Peninsula. Our results suggest a continuous decline in wolf numbers in Europe since the Late Pleistocene, and long-term isolation and bottlenecks in the Italian and Iberian populations following their divergence from the Eastern European population. The Italian and Iberian populations have low genetic variability and high linkage disequilibrium, but relatively few autozygous segments across the genome. This last characteristic clearly distinguishes them from populations that underwent recent drastic demographic declines or founder events, and implies long-term bottlenecks in these two populations. Although genetic drift due to spatial isolation and bottlenecks seems to be a major evolutionary force diversifying the European populations, we detected 35 loci that are putatively under diversifying selection. Two of these loci flank the canine platelet-derived growth factor gene, which affects bone growth and may influence differences in body size between wolf populations. This study demonstrates the power of population genomics for identifying genetic signals of demographic bottlenecks and detecting signatures of directional selection in bottlenecked populations, despite their low background variability.
- Published
- 2014
- Full Text
- View/download PDF
6. MHC variability in an isolated wolf population in Italy.
- Author
-
Galaverni M, Caniglia R, Fabbri E, Lapalombella S, and Randi E
- Subjects
- Alleles, Animals, Base Sequence, Dogs genetics, Female, Gene Frequency, Genetic Variation, Genetics, Population, Genotype, Italy, Major Histocompatibility Complex genetics, Male, Microsatellite Repeats genetics, Selection, Genetic, HLA-DQ alpha-Chains genetics, HLA-DQ beta-Chains genetics, HLA-DRB1 Chains genetics, Sequence Analysis, DNA veterinary, Wolves genetics
- Abstract
Small, isolated populations may experience increased extinction risk due to reduced genetic variability at important functional genes, thus decreasing the population's adaptive potential. The major histocompatibility complex (MHC), a key immunological gene cluster, usually shows high variability maintained by positive or balancing selection in response to challenges by pathogens. Here we investigated for the first time, the variability of 3 MHC class II genes (DRB1, DQA1, and DQB1) in 94 samples collected from Italian wolves. The Italian wolf population has been long isolated south of the Alps and is presently recovering from a recent bottleneck that decreased the population to less than 100 individuals. Despite the bottleneck, Italian wolves show remarkable MHC variability with 6-9 alleles per locus, including 2 recently described alleles at DRB1. MHC sequences show signatures of historical selective pressures (high d N/d S ratio, ω > 1.74) but no evidence of ongoing selection. Variation at the MHC genes and 12 background microsatellite loci were not apparently affected by the recent bottleneck. Although MHC alleles of domestic dog origin were detected in 8 genetically admixed individuals, these alleles were rare or absent in nonadmixed wolves. Thus, despite known hybridization events between domestic dogs and Italian wolves, the Italian wolf population does not appear affected by deep introgression of domestic dog MHC alleles.
- Published
- 2013
- Full Text
- View/download PDF
7. Forensic DNA against wildlife poaching: identification of a serial wolf killing in Italy.
- Author
-
Caniglia R, Fabbri E, Greco C, Galaverni M, and Randi E
- Subjects
- Animals, Bayes Theorem, Female, Italy, Male, Microsatellite Repeats genetics, Conservation of Natural Resources, DNA genetics, Forensic Genetics, Wolves genetics
- Abstract
The recent expansion of the Italian wolf population through the Apennine and western Alps, after centuries of contractions, is causing conflicts with human activities leading to a rise in poaching or illegal killings. Here we show how molecular population genetics has been used to identify a suspect serial wolf killer. We analysed DNA extracted from a necklace made of ten presumed wolf canine teeth, confiscated in 2008 to a man living in the northern Italian Apennine (Liguria Region). Individual genotypes were determined using 12 unlinked autosomal microsatellites (STRs), mtDNA control-region sequences, a male-specific ZFX/ZFY restriction-site and three Y-linked STRs. Results indicate that the teeth belonged to six different individuals (three males and three females), which were assigned to the Italian wolf population with p > 0.90 by Bayesian procedures. One of these genotypes matched with the genetic profile of a male wolf previously found-dead and already non-invasively sampled in the same area. Another genotype matched with that of a female wolf non-invasively sampled twice in the same area 1 year before. These data are being used as forensic genetic evidence in the ongoing criminal trial against the suspect serial wolf killer., (Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.)
- Published
- 2010
- Full Text
- View/download PDF
8. From the Apennines to the Alps: colonization genetics of the naturally expanding Italian wolf (Canis lupus) population.
- Author
-
Fabbri E, Miquel C, Lucchini V, Santini A, Caniglia R, Duchamp C, Weber JM, Lequette B, Marucco F, Boitani L, Fumagalli L, Taberlet P, and Randi E
- Subjects
- Animal Migration, Animals, Bayes Theorem, Cluster Analysis, Founder Effect, Gene Flow, Genotype, Italy, Microsatellite Repeats, Wolves physiology, Geography, Wolves genetics
- Abstract
Wolves in Italy strongly declined in the past and were confined south of the Alps since the turn of the last century, reduced in the 1970s to approximately 100 individuals surviving in two fragmented subpopulations in the central-southern Apennines. The Italian wolves are presently expanding in the Apennines, and started to recolonize the western Alps in Italy, France and Switzerland about 16 years ago. In this study, we used a population genetic approach to elucidate some aspects of the wolf recolonization process. DNA extracted from 3068 tissue and scat samples collected in the Apennines (the source populations) and in the Alps (the colony), were genotyped at 12 microsatellite loci aiming to assess (i) the strength of the bottleneck and founder effects during the onset of colonization; (ii) the rates of gene flow between source and colony; and (iii) the minimum number of colonizers that are needed to explain the genetic variability observed in the colony. We identified a total of 435 distinct wolf genotypes, which showed that wolves in the Alps: (i) have significantly lower genetic diversity (heterozygosity, allelic richness, number of private alleles) than wolves in the Apennines; (ii) are genetically distinct using pairwise F(ST) values, population assignment test and Bayesian clustering; (iii) are not in genetic equilibrium (significant bottleneck test). Spatial autocorrelations are significant among samples separated up to c. 230 km, roughly correspondent to the apparent gap in permanent wolf presence between the Alps and north Apennines. The estimated number of first-generation migrants indicates that migration has been unidirectional and male-biased, from the Apennines to the Alps, and that wolves in southern Italy did not contribute to the Alpine population. These results suggest that: (i) the Alps were colonized by a few long-range migrating wolves originating in the north Apennine subpopulation; (ii) during the colonization process there has been a moderate bottleneck; and (iii) gene flow between sources and colonies was moderate (corresponding to 1.25-2.50 wolves per generation), despite high potential for dispersal. Bottleneck simulations showed that a total of c. 8-16 effective founders are needed to explain the genetic diversity observed in the Alps. Levels of genetic diversity in the expanding Alpine wolf population, and the permanence of genetic structuring, will depend on the future rates of gene flow among distinct wolf subpopulation fragments.
- Published
- 2007
- Full Text
- View/download PDF
9. Detecting introgressive hybridization between free-ranging domestic dogs and wild wolves (Canis lupus) by admixture linkage disequilibrium analysis.
- Author
-
Verardi A, Lucchini V, and Randi E
- Subjects
- Alleles, Animals, Bayes Theorem, Chromosomes, Mammalian genetics, Cluster Analysis, Female, Genetic Variation, Genetics, Population, Geography, Italy, Male, Microsatellite Repeats genetics, Dogs genetics, Hybridization, Genetic genetics, Linkage Disequilibrium genetics, Wolves genetics
- Abstract
Occasional crossbreeding between free-ranging domestic dogs and wild wolves (Canis lupus) has been detected in some European countries by mitochondrial DNA sequencing and genotyping unlinked microsatellite loci. Maternal and unlinked genomic markers, however, might underestimate the extent of introgressive hybridization, and their impacts on the preservation of wild wolf gene pools. In this study, we genotyped 220 presumed Italian wolves, 85 dogs and 7 known hybrids at 16 microsatellites belonging to four different linkage groups (plus four unlinked microsatellites). Population clustering and individual assignments were performed using a Bayesian procedure implemented in structure 2.1, which models the gametic disequilibrium arising between linked loci during admixtures, aiming to trace hybridization events further back in time and infer the population of origin of chromosomal blocks. Results indicate that (i) linkage disequilibrium was higher in wolves than in dogs; (ii) 11 out of 220 wolves (5.0%) were likely admixed, a proportion that is significantly higher than one admixed genotype in 107 wolves found previously in a study using unlinked markers; (iii) posterior maximum-likelihood estimates of the recombination parameter r revealed that introgression in Italian wolves is not recent, but could have continued for the last 70 (+/- 20) generations, corresponding to approximately 140-210 years. Bayesian clustering showed that, despite some admixture, wolf and dog gene pools remain sharply distinct (the average proportions of membership to wolf and dog clusters were Q(w) = 0.95 and Q(d) = 0.98, respectively), suggesting that hybridization was not frequent, and that introgression in nature is counteracted by behavioural or selective constraints.
- Published
- 2006
- Full Text
- View/download PDF
10. Evidence of genetic distinction and long-term population decline in wolves (Canis lupus) in the Italian Apennines.
- Author
-
Lucchini V, Galov A, and Randi E
- Subjects
- Animals, Bayes Theorem, Cluster Analysis, DNA, Mitochondrial genetics, Gene Frequency, Geography, Haplotypes genetics, Italy, Microsatellite Repeats genetics, Population Density, Population Dynamics, Genetics, Population, Models, Genetic, Wolves genetics
- Abstract
Historical information suggests the occurrence of an extensive human-caused contraction in the distribution range of wolves (Canis lupus) during the last few centuries in Europe. Wolves disappeared from the Alps in the 1920s, and thereafter continued to decline in peninsular Italy until the 1970s, when approximately 100 individuals survived, isolated in the central Apennines. In this study we performed a coalescent analysis of multilocus DNA markers to infer patterns and timing of historical population changes in wolves surviving in the Apennines. This population showed a unique mitochondrial DNA control-region haplotype, the absence of private alleles and lower heterozygosity at microsatellite loci, as compared to other wolf populations. Multivariate, clustering and Bayesian assignment procedures consistently assigned all the wolf genotypes sampled in Italy to a single group, supporting their genetic distinction. Bottleneck tests showed evidences of population decline in the Italian wolves, but not in other populations. Results of a Bayesian coalescent model indicate that wolves in Italy underwent a 100- to 1000-fold population contraction over the past 2000-10,000 years. The population decline was stronger and longer in peninsular Italy than elsewhere in Europe, suggesting that wolves have apparently been genetically isolated for thousands of generations south of the Alps. Ice caps covering the Alps at the Last Glacial Maximum (c. 18,000 years before present), and the wide expansion of the Po River, which cut the alluvial plains throughout the Holocene, might have provided effective geographical barriers to wolf dispersal. More recently, the admixture of Alpine and Apennine wolf populations could have been prevented by deforestation, which was already widespread in the fifteenth century in northern Italy. This study suggests that, despite the high potential rates of dispersal and gene flow, local wolf populations may not have mixed for long periods of time.
- Published
- 2004
- Full Text
- View/download PDF
11. Conservation genetics of carnivores in Italy.
- Author
-
Randi E
- Subjects
- Animals, Animals, Wild genetics, Biodiversity, Carnivora classification, Geography, Italy, Otters classification, Otters genetics, Phylogeny, Population Dynamics, Ursidae classification, Ursidae genetics, Wolves classification, Wolves genetics, Carnivora genetics, Conservation of Natural Resources
- Abstract
Pleistocene climatic changes shaped the patterns of biodiversity in Europe and around the Mediterranean. Describing the phylogeographic structure of animal populations and inferring past population dynamics is essential to develop a framework for conservation biology in Europe. Direct persecution, habitat loss, population fragmentation and hybridization with domesticated conspecifics, are the main threats to the survival of large mammalian species. In this paper I will summarize the available information on phylogeography and population genetics of brown bear, wolf, wildcat and otters in Italy and in Europe.
- Published
- 2003
- Full Text
- View/download PDF
12. Noninvasive molecular tracking of colonizing wolf (Canis lupus) packs in the western Italian Alps.
- Author
-
Lucchini V, Fabbri E, Marucco F, Ricci S, Boitani L, and Randi E
- Subjects
- Animals, Behavior, Animal, Conservation of Natural Resources, DNA, Mitochondrial chemistry, Feces chemistry, Genetics, Population, Italy, Locus Control Region genetics, Microsatellite Repeats genetics, Phylogeny, Pilot Projects, Polymerase Chain Reaction, Sequence Analysis, DNA, Sex Chromosomes chemistry, Sex Chromosomes genetics, DNA, Mitochondrial genetics, Wolves genetics
- Abstract
We used noninvasive methods to obtain genetic and demographic data on the wolf packs (Canis lupus), which are now recolonizing the Alps, a century after their eradication. DNA samples, extracted from presumed wolf scats collected in the western Italian Alps (Piemonte), were genotyped to determine species and sex by sequencing parts of the mitochondrial DNA (mtDNA) control-region and ZFX/ZFY genes. Individual genotypes were identified by multilocus microsatellite analyses using a multiple tubes polymerase chain reaction (PCR). The performance of the laboratory protocols was affected by the age of samples. The quality of excremental DNA extracts was higher in samples freshly collected on snow in winter than in samples that were older or collected during summer. Preliminary mtDNA screening of all samples allowed species identification and was a good predictor of further PCR performances. Wolf, and not prey, DNA targets were preferentially amplified. Allelic dropout occurred more frequently than false alleles, but the probability of false homozygote determinations was always < 0.001. A panel of six to nine microsatellites would allow identification of individual wolf genotypes, also whether related, with a probability of identity of < 0.015. Genealogical relationships among individuals could be determined reliably if the number of candidate parents was 6-8, and most of them had been sampled and correctly genotyped. Genetic data indicate that colonizing Alpine wolves originate exclusively from the Italian source population and retain a high proportion of its genetic diversity. Spatial and temporal locations of individual genotypes, and kinship analyses, suggest that two distinct packs of closely related wolves, plus some unrelated individuals, ranged in the study areas. This is in agreement with field observations.
- Published
- 2002
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.