1. Penguin head movement detected using small accelerometers: a proxy of prey encounter rate.
- Author
-
Kokubu, Nobuo, Jeong-Hoon Kim, Hyoung-Chul Shin, Naito, Yasuhiko, and Takahashi, Akinori
- Subjects
PENGUINS ,ANIMAL mechanics ,SPATIAL variation ,FORAGING behavior ,PREDATION ,ACCELEROMETERS - Abstract
Determining temporal and spatial variation in feeding rates is essential for understanding the relationship between habitat features and the foraging behavior of top predators. In this study we examined the utility of head movement as a proxy of prey encounter rates in medium-sized Antarctic penguins, under the presumption that the birds should move their heads actively when they encounter and peck prey. A field study of free-ranging chinstrap and gentoo penguins was conducted at King George Island, Antarctica. Head movement was recorded using small accelerometers attached to the head, with simultaneous monitoring for prey encounter or body angle. The main prey was Antarctic krill (>99% in wet mass) for both species. Penguin head movement coincided with a slow change in body angie during dives. Active head movements were extracted using a high-pass filter (5Hz acceleration signals) and the remaining acceleration peaks (higher than a threshold acceleration of 1.0 g) were counted. The timing of head movements coincided well with images of prey taken from the back-mounted cameras: head movement was recorded within ±2.5 s of a prey image on 89.1±16.1% (N=7 trips) of images. The number of head movements varied largely among dive bouts, suggesting large temporal variations in prey encounter rates. Our results show that head movement is an effective proxy of prey encounter, and we suggest that the method will be widely applicable for a variety of predators. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF