A paleolimnological approach was used for the assessment of the recent eutrophication history and identification of possible reference conditions in the large, shallow, eutrophic Lake Peipsi. Lake Peipsi is the fourth largest lake by area, and the largest transboundary lake in Europe, being shared between Estonia and Russia. Lake Peipsi has been anthropogenically impacted over a longer time-scale than that covered by instrumental limnological monitoring. The 210Pb record and down-core distribution of fly-ash particles in the 40-cm core from the middle part of the lake suggest 130 years of sediment accumulation. Diatom assemblages indicate alkaline mesotrophic conditions and a well-illuminated water column, sediment pore-water fluorescence index values suggest low autochthonous productivity and a stable aquatic ecosystem similar to natural reference conditions during the second half of 19th and early 20th century. Near-synchronous stratigraphic changes including the expansion of the eutrophic planktonic diatom Stephanodiscus parvus, the appearance of new species associated with eutrophic lakes and the decrease in the relative abundance of littoral diatoms, together with changes in the fluorescence properties of sediment pore-water dissolved organic matter, imply increased nutrient availability, enlarged phytoplankton crops, reduced water-column transparency and the onset of human-induced disturbances in the lake since the mid-20th century. The most conspicuous expansion of eutrophic planktonic diatoms and maximum concentration of siliceous microfossils occur simultaneously with changes in the fluorescence indexes of pore-water dissolved organic matter, indicating a pronounced increase in the contribution of autochthonous organic matter to the lake sediment. This implies that nutrient loading and anthropogenic impact was at a maximum during the 1970s and 1980s. Sedimentary diatom flora may reflect a reduction of phosphorus loading since the 1990s. However, the absolute abundance of planktonic diatoms and sediment pore-water fluorescence index values vary greatly implying that the lake ecosystem is still rather unstable. [ABSTRACT FROM AUTHOR]