1. Significance of the Microfluidic Flow Inside the Organ of Corti.
- Author
-
Zagadou, Brissi F., Barbone, Paul E., and Mountain, David C.
- Subjects
- *
CORTI'S organ , *MODE shapes , *HAIR cells , *BASILAR membrane , *EXTRACELLULAR fluid , *DEFLECTION (Mechanics) - Abstract
We study the vibration modes of a short section in the middle turn of the gerbil cochlea including both longitudinal and radial interstitial fluid spaces between the pillar cells (PC) and the sensory hair cells to determine the role of the interstitial fluid flow within the organ of corti (OoC). Three detailed finite element (FE) models of the cochlear short section (CSS) are studied. In model 1, the CSS is without fluids; model 2 includes the OoC fluid, but not the exterior scalae fluids; and model 3 is the CSS with both scalae and OoC fluids. We find that: (1) the fundamental mode shape of models 1 or 3 is similar to the classical basilar membrane (BM) bending mode that includes pivoting of the arch of corti, and hence determines the low frequency vibrational mode shape of the cochlea in the presence of the cochlear wave. (2) The fundamental mode shape of model 2 is characterized by a cross-sectional shape change similar to the passive response of the cochlea. This mode shape includes a tilting motion of the inner hair cell (IHC) region, a fluid motion within the tunnel of corti (ToC) in the radial direction and along the OoC, and a bulging motion of the reticular lamina (RL) above the outer hair cell (OHC). Each of these motions provides a plausible mode of excitation of the sensory hair cells. (3) The higher vibrational modes of model 1 are similar to the electrically evoked response within the OoC and suggests that the higher vibrational modes are responsible for the active response of the cochlea. We also observed that the fluid flow through the OoC interstitial space is significant, and the model comparison suggests that the OoC fluid contributes to the biphasic BM motion seen in electrical stimulation experiments. The effect of fluid viscosity on cilium deflection was assessed by performing a transient analysis to calculate the cilium shearing gain. The gain values are found to be within the range of experimentally measured values reported by Dallos et al. (1996, The Cochlea, Springer-Verlag, New York). [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF