1. Emergence of methicillin resistance predates the clinical use of antibiotics.
- Author
-
Larsen J, Raisen CL, Ba X, Sadgrove NJ, Padilla-González GF, Simmonds MSJ, Loncaric I, Kerschner H, Apfalter P, Hartl R, Deplano A, Vandendriessche S, Černá Bolfíková B, Hulva P, Arendrup MC, Hare RK, Barnadas C, Stegger M, Sieber RN, Skov RL, Petersen A, Angen Ø, Rasmussen SL, Espinosa-Gongora C, Aarestrup FM, Lindholm LJ, Nykäsenoja SM, Laurent F, Becker K, Walther B, Kehrenberg C, Cuny C, Layer F, Werner G, Witte W, Stamm I, Moroni P, Jørgensen HJ, de Lencastre H, Cercenado E, García-Garrote F, Börjesson S, Hæggman S, Perreten V, Teale CJ, Waller AS, Pichon B, Curran MD, Ellington MJ, Welch JJ, Peacock SJ, Seilly DJ, Morgan FJE, Parkhill J, Hadjirin NF, Lindsay JA, Holden MTG, Edwards GF, Foster G, Paterson GK, Didelot X, Holmes MA, Harrison EM, and Larsen AR
- Subjects
- Animals, Anti-Bacterial Agents metabolism, Arthrodermataceae genetics, Denmark, Europe, Evolution, Molecular, Geographic Mapping, History, 20th Century, Humans, Methicillin-Resistant Staphylococcus aureus metabolism, New Zealand, One Health, Penicillins biosynthesis, Phylogeny, beta-Lactams metabolism, Anti-Bacterial Agents history, Arthrodermataceae metabolism, Hedgehogs metabolism, Hedgehogs microbiology, Methicillin Resistance genetics, Methicillin-Resistant Staphylococcus aureus genetics, Selection, Genetic genetics
- Abstract
The discovery of antibiotics more than 80 years ago has led to considerable improvements in human and animal health. Although antibiotic resistance in environmental bacteria is ancient, resistance in human pathogens is thought to be a modern phenomenon that is driven by the clinical use of antibiotics
1 . Here we show that particular lineages of methicillin-resistant Staphylococcus aureus-a notorious human pathogen-appeared in European hedgehogs in the pre-antibiotic era. Subsequently, these lineages spread within the local hedgehog populations and between hedgehogs and secondary hosts, including livestock and humans. We also demonstrate that the hedgehog dermatophyte Trichophyton erinacei produces two β-lactam antibiotics that provide a natural selective environment in which methicillin-resistant S. aureus isolates have an advantage over susceptible isolates. Together, these results suggest that methicillin resistance emerged in the pre-antibiotic era as a co-evolutionary adaptation of S. aureus to the colonization of dermatophyte-infected hedgehogs. The evolution of clinically relevant antibiotic-resistance genes in wild animals and the connectivity of natural, agricultural and human ecosystems demonstrate that the use of a One Health approach is critical for our understanding and management of antibiotic resistance, which is one of the biggest threats to global health, food security and development., (© 2022. The Author(s).)- Published
- 2022
- Full Text
- View/download PDF