1. Higher‐latitude spring‐flowering herbs advance their phenology more than trees with warming temperatures.
- Author
-
Alecrim, Evelyn F., Sargent, Risa D., and Forrest, Jessica R. K.
- Subjects
- *
PLANT phenology , *PHENOLOGY , *HARDWOOD forests , *SOIL temperature , *TREES , *ATMOSPHERIC temperature , *HERBS - Abstract
The phenologies of co‐occurring trees and spring‐blooming understory herbs in northeastern North American hardwood forests appear to be regulated by different environmental drivers – air temperature and soil temperature/snowpack, respectively. Accordingly, it has been hypothesized that climate change–driven asymmetry in the advancement of canopy leaf‐out relative to the timing of understory growth could reduce photosynthetic rates and reproductive success of understory herbs through greater early‐season shading.To determine whether trees and spring‐flowering forest herbs are advancing their phenologies at different rates with respect to increasing global temperatures, we examined the phenological responses to warming of 10 species of trees and 11 species of spring‐flowering forest herbs (8045 observations from 965 sites) in northeastern North America using 13 years of data collected by citizen scientists under the auspices of the USA‐National Phenology Network.Contrary to expectation, the degree of advancement of leaf‐out as a function of temperature was greater in spring‐flowering forest herbs than in trees, with a mean response rate of −4.9 days/°C (95% BCI [−5.2, −4.6]) for spring‐flowering forest herbs vs. −3.3 days/°C (95% BCI [−3.5, −3.1]) for trees. However, the response to temperature was not consistent across the latitudinal range, with spring‐flowering forest herbs responding more strongly to warming than trees at middle (40–44°N) and higher (45–48°N) latitudes but not at lower latitudes (35–39°N).Synthesis. In contrast to previous suggestions, our study shows spring‐flowering forest herbs advancing their phenology at a higher rate than trees with respect to warming through most of the latitudinal range investigated, which could translate into a longer growing season and increased carbon uptake for spring‐flowering forest herbs as spring temperatures rise. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF