1. Characteristics of Microbial Diversity and Metabolic Versatility in Dynamic Mid-Okinawa Trough Subsurface Sediments.
- Author
-
Xin, Youzhi, Zhang, Tao, Chen, Ye, Wu, Linqiang, Jiang, Chengzhu, and Wu, Nengyou
- Subjects
EXTREME environments ,COLD seeps ,MARINE sediments ,HYDROTHERMAL vents ,MICROBIAL metabolism ,MICROBIAL diversity - Abstract
Large-scale and multi-sample datasets have revealed that microbial diversity and geographic distribution patterns are distinct across various habitats, particularly between hydrothermal vent and cold seep ecosystems. To date, our understanding of the effects of spatial and geochemical gradients on marine microbial communities remains limited. Here, we report the microbial diversity and metabolic versatility of a remote seafloor sediment ecosystem at different sites (GC-2, -4, -5, -6, -8) in the Mid-Okinawa Trough (Mid-OT) using high-throughput metagenomic sequencing technology. Desulfobacteraceae (3.1%) were detected in a high abundance at GC-2 with intense methane concentrations (353 μL/L), which showed a clear correlation with cold seeping. Whereas Candidatus Brocadiaceae (1.7%), Rhodobacteraceae (0.9%), and Rhodospirillaceae (0.7%), which are commonly involved in denitrification and sulfur oxidation, were enriched at GC-8. Concurrently investigating the potential of deep-sea microbial metabolism, we gained insights into the adaptive capabilities and metabolic mechanisms of microorganisms within seafloor environments. Utilizing the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, the analysis of functional modules revealed a significant enrichment (71–74%) of genes associated with metabolic pathways. These results expand our knowledge of the relationship between microbial biodiversity and metabolic versatility in deep-sea extreme environments. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF