1. Machine learning‐assisted anomaly detection for power line components: A case study in Pakistan.
- Author
-
Basit, Abdul, Manzoor, Habib Ullah, Akram, Muhammad, Gelani, Hasan Erteza, and Hussain, Sajjad
- Subjects
MACHINE learning ,ANOMALY detection (Computer security) ,ELECTRIC lines ,ELECTRIC power distribution - Abstract
A continuous supply of electricity is necessary to maintain an acceptable standard of life, and the power distribution system's overhead line components play a crucial role in this matter. In Pakistan, identifying defective parts often necessitates human involvement. An unmanned aerial vehicle was used to gather a collection of 10,343 photos to automate this procedure. Using supervised and unsupervised machine learning methods, a number of automated anomaly detection systems were created. Support vector machine, random forest, VGG16, and ResNet50 were used as supervised machine learning models, and a convolutional auto‐encoder was used as the unsupervised machine learning model. VGG16 achieved the best accuracy of 99.00% while random forest achieved the worst accuracy of 72.49%. The convolutional auto‐encoder was successful in distinguishing between normal and abnormal components. The aforementioned machine learning models can be put on unmanned aerial vehicles to immediately identify defective parts. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF