1. Parent of origin genetic effects on methylation in humans are common and influence complex trait variation.
- Author
-
Zeng Y, Amador C, Xia C, Marioni R, Sproul D, Walker RM, Morris SW, Bretherick A, Canela-Xandri O, Boutin TS, Clark DW, Campbell A, Rawlik K, Hayward C, Nagy R, Tenesa A, Porteous DJ, Wilson JF, Deary IJ, Evans KL, McIntosh AM, Navarro P, and Haley CS
- Subjects
- Adult, CpG Islands, Female, Genotype, Humans, Male, Middle Aged, Polymorphism, Single Nucleotide, Scotland, DNA Methylation genetics, Gene Expression Regulation, Genomic Imprinting genetics, Quantitative Trait Loci genetics
- Abstract
Parent-of-origin effects (POE) exist when there is differential expression of alleles inherited from the two parents. A genome-wide scan for POE on DNA methylation at 639,238 CpGs in 5,101 individuals identifies 733 independent methylation CpGs potentially influenced by POE at a false discovery rate ≤ 0.05 of which 331 had not previously been identified. Cis and trans methylation quantitative trait loci (mQTL) regulate methylation variation through POE at 54% (399/733) of the identified POE-influenced CpGs. The combined results provide strong evidence for previously unidentified POE-influenced CpGs at 171 independent loci. Methylation variation at 14 of the POE-influenced CpGs is associated with multiple metabolic traits. A phenome-wide association analysis using the POE mQTL SNPs identifies a previously unidentified imprinted locus associated with waist circumference. These results provide a high resolution population-level map for POE on DNA methylation sites, their local and distant regulators and potential consequences for complex traits.
- Published
- 2019
- Full Text
- View/download PDF