1. 40-Year Statistics of Warm-Season Extreme Hourly Precipitation over Southwest China.
- Author
-
ROUYI JIANG, XIAOPENG CUI, JIAN LIN, and JIA TIAN
- Subjects
WATER vapor transport ,GEOPOTENTIAL height - Abstract
Southwest China (SWC) possesses complicated topography with frequent geological activities, where heavy precipitation occurs frequently in warm seasons. Few previous studies on extreme precipitation were carried out at hourly scales. In this study, spatiotemporal variations of the extreme hourly precipitation (EHP) over SWC during the warm season of 1981-2020 and the involved mechanisms are investigated. Results show that the threshold and intensity of EHP present similar spatial distribution-lower (higher) in the west (east) part of SWC, while the EHP frequency is opposite. The long-term trend of EHP amount shows a more significant positive tendency than that of hourly precipitation (HP) amount due to synchronous increases in intensity and frequency. The significant increasing trend of EHP occurs in areas above 500-m terrain height, with a weak increasing trend below 500 m (e.g., Chongqing and eastern Sichuan). EHP appears mainly from June to August and exhibits a bimodal distribution in diurnal variation. The mechanism analysis demonstrates that occurrences of EHP are generally accompanied by positive anomalies of temperature, humidity, and geopotential height. Anomalous cyclonic circulation can also be found in the low-level wind field. The westward and northward extension of the western North Pacific subtropical high (WNPSH) as well as temperature rise may be the primary reason for the increase of EHP. For Chongqing and eastern Sichuan, the anticyclone circulation in low-level and the significantly weakened water vapor flux convergence cause poor moisture and dynamic conditions, inhibiting the growth of EHP. SIGNIFICANCE STATEMENT: Heavy precipitation occurs frequently during the warm season in Southwest China (SWC), often causing severe impacts on human safety and economic property. This study analyses spatiotemporal variations of the extreme hourly precipitation (EHP) over SWC during the warm season of 1981-2020 and the involved mechanisms. The increasing trend of EHP far exceeds that of hourly precipitation (HP), especially in areas above 500 m. The westward and northward extension of the western North Pacific subtropical high (WNPSH) and temperature rise may be the main reason for the increase of EHP. For areas below 500 m (e.g., Chongqing and eastern Sichuan), poor moisture and dynamic conditions inhibited the growth of EHP. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF