1. The pre-eruptive volatile contents of recent basaltic and pantelleritic magmas at Pantelleria (Italy)
- Author
-
Gioncada, A. and Landi, P.
- Subjects
- *
MAGMAS , *BASALT , *VOLATILE organic compounds , *INCLUSIONS in igneous rocks , *RIFTS (Geology) , *VOLCANIC ash, tuff, etc. , *CRYSTALLIZATION - Abstract
Abstract: Pantelleria Island, located in the Sicily Channel Rift Zone (Italy), is the type locality for the peralkaline rhyolitic rocks called pantellerites. In the last 50ka, after the large Green Tuff caldera-forming eruption, volcanic activity at Pantelleria has consisted of effusive and explosive eruptions mostly vented inside and along the rim of the caldera and producing silicic lava flows, lava domes and poorly dispersed pantelleritic pumice fall deposits. Basaltic cinder cones and lava flows are only present outside the caldera in the NW sector of the island. The most recent basaltic (Cuddie Rosse, ∼20ka) and pantelleritic (Cuddia Randazzo and Cuddia del Gallo, ∼6ka) pyroclastic products were sampled to investigate magmatic volatile contents through the study of melt inclusions. The melt inclusions in pyroxene and olivine phenocrysts of Cuddie Rosse scoriae have an alkali basalt composition. The dissolved volatiles comprise 0.9–1.6wt.% H2O, several hundred ppm of CO2, 1600–2000ppm of sulphur and 500–900ppm of chlorine. The water–carbon dioxide couple gives a confining pressure ∼2kbar prior to the eruption. This result indicates that episodes of magma ponding and crystallization occurred in the upper crust prior to eruption. The melt inclusions in feldspar, fayalite and aenigmatite phenocrysts of Cuddia del Gallo and Cuddia Randazzo pumice have a pantelleritic composition (Agpaitic Indices 1.3–2.1), up to 4.4wt.% H2O, 8700ppm Cl, 6000ppm F, and CO2 below the detection limit. Sulphur averaging 420ppm has been measured in Cuddia Randazzo melt inclusions. These data indicate relatively high volatile contents for these low-energy Strombolian-type eruptions. Melt inclusions in Cuddia del Gallo pumice show the most evolved composition (Agpaitic Indices 2–2.1) and the highest volatile content, in agreement with fluid saturation conditions in the magma chamber prior to the eruption. This implies a confining pressure of ∼1kbar for the top of the pantelleritic reservoir. The composition of melt inclusions and mineralogical assemblage of Cuddia Randazzo pumice indicate that it has a lower evolutionary degree (Agpaitic Indices 1.3–1.8) and lower pre-eruptive Cl and H2O contents than Cuddia del Gallo pumice. An increase in pressure due to the exsolution of volatiles in the upper part of the pantelleritic reservoir may have triggered the Cuddia del Gallo explosive eruption. Evidence of widespread pre-eruptive mingling between trachytes and pantellerites suggests that the intrusion of trachytic magma into the pantelleritic reservoir likely played a major role in destabilizing the magma system just prior to the Cuddia Randazzo event. [Copyright &y& Elsevier]
- Published
- 2010
- Full Text
- View/download PDF