1. Moderate resolution LAI prediction using Sentinel-2 satellite data and indirect field measurements in Sikkim Himalaya.
- Author
-
Mudi S, Paramanik S, Behera MD, Prakash AJ, Deep NR, Kale MP, Kumar S, Sharma N, Pradhan P, Chavan M, Roy PS, and Shrestha DG
- Subjects
- India, Photography, Sikkim, Environmental Monitoring methods, Plant Leaves
- Abstract
The leaf area index (LAI) has been traditionally used as a photosynthetic variable. LAI plays an essential role in forest cover monitoring and has been identified as one of the important climate variables. However, due to challenges in field sampling, complex topography, and availability of cloud-free optical satellite data, LAI assessment on larger scale is still unexplored in the Sikkim Himalayan area. We used two optical instruments, digital hemispherical photography (DHP) and LAI-2200C, to assess the LAI across four different forests following 20 × 20 m
2 elementary sampling units (ESUs) in the Himalayan state of Sikkim, India. The use of Sentinel-2 derived vegetation indices (VIs) demonstrated a better correlation with the DHP based LAI estimates than using LAI-2200C. Further, the combination of both reflectance bands and VIs were integrated to predict the LAI maps using random forest model. The temperate evergreen forests demonstrated the highest LAI value, while the predicted maps exhibited LAI maxima of 3.4. The estimated vs predicted LAI for DHP and LAI-2200C based estimation demonstrated reasonably good (R2 = 0.63 and R2 = 0.68, respectively) agreement. Further, improvements on the LAI prediction can be attempted by minimizing errors from the inherent field protocols, optimizing the density of field measurements, and representing heterogeneity. The recent rise of frequent forest fires in Sikkim Himalaya prompts for better understanding of fuel load in terms of surface fuel or canopy fuel that can be linked to LAI. The high-resolution LAI map could serve as input to forest fuel bed characterization, especially in seasonal forests with significant variations in green leaves and litter, thereby offering inputs for forest management in changing climate., (© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)- Published
- 2022
- Full Text
- View/download PDF