1. Genomics and Susceptibility Profiles of Extensively Drug-Resistant Pseudomonas aeruginosa Isolates from Spain.
- Author
-
Del Barrio-Tofiño E, López-Causapé C, Cabot G, Rivera A, Benito N, Segura C, Montero MM, Sorlí L, Tubau F, Gómez-Zorrilla S, Tormo N, Durá-Navarro R, Viedma E, Resino-Foz E, Fernández-Martínez M, González-Rico C, Alejo-Cancho I, Martínez JA, Labayru-Echverria C, Dueñas C, Ayestarán I, Zamorano L, Martinez-Martinez L, Horcajada JP, and Oliver A
- Subjects
- Aminoglycosides pharmacology, Bacterial Proteins genetics, Cephalosporins pharmacology, Fluoroquinolones pharmacology, Humans, Microbial Sensitivity Tests, Molecular Epidemiology, Penicillanic Acid analogs & derivatives, Penicillanic Acid pharmacology, Polymyxins pharmacology, Pseudomonas Infections drug therapy, Pseudomonas Infections epidemiology, Pseudomonas Infections microbiology, Pseudomonas aeruginosa isolation & purification, Spain epidemiology, Tazobactam, beta-Lactam Resistance genetics, beta-Lactamases genetics, Anti-Bacterial Agents pharmacology, Drug Resistance, Bacterial genetics, Pseudomonas aeruginosa drug effects, Pseudomonas aeruginosa genetics
- Abstract
This study assessed the molecular epidemiology, resistance mechanisms, and susceptibility profiles of a collection of 150 extensively drug-resistant (XDR) Pseudomonas aeruginosa clinical isolates obtained from a 2015 Spanish multicenter study, with a particular focus on resistome analysis in relation to ceftolozane-tazobactam susceptibility. Broth microdilution MICs revealed that nearly all (>95%) of the isolates were nonsusceptible to piperacillin-tazobactam, ceftazidime, cefepime, aztreonam, imipenem, meropenem, and ciprofloxacin. Most of them were also resistant to tobramycin (77%), whereas nonsusceptibility rates were lower for ceftolozane-tazobactam (31%), amikacin (7%), and colistin (2%). Pulsed-field gel electrophoresis-multilocus sequence typing (PFGE-MLST) analysis revealed that nearly all of the isolates belonged to previously described high-risk clones. Sequence type 175 (ST175) was detected in all 9 participating hospitals and accounted for 68% ( n = 101) of the XDR isolates, distantly followed by ST244 ( n = 16), ST253 ( n = 12), ST235 ( n = 8), and ST111 ( n = 2), which were detected only in 1 to 2 hospitals. Through phenotypic and molecular methods, the presence of horizontally acquired carbapenemases was detected in 21% of the isolates, mostly VIM (17%) and GES enzymes (4%). At least two representative isolates from each clone and hospital ( n = 44) were fully sequenced on an Illumina MiSeq. Classical mutational mechanisms, such as those leading to the overexpression of the β-lactamase AmpC or efflux pumps, OprD inactivation, and/or quinolone resistance-determining regions (QRDR) mutations, were confirmed in most isolates and correlated well with the resistance phenotypes in the absence of horizontally acquired determinants. Ceftolozane-tazobactam resistance was not detected in carbapenemase-negative isolates, in agreement with sequencing data showing the absence of ampC mutations. The unique set of mutations responsible for the XDR phenotype of ST175 clone documented 7 years earlier were found to be conserved, denoting the long-term persistence of this specific XDR lineage in Spanish hospitals. Finally, other potentially relevant mutations were evidenced, including those in penicillin-binding protein 3 (PBP3), which is involved in β-lactam (including ceftolozane-tazobactam) resistance, and FusA1, which is linked to aminoglycoside resistance., (Copyright © 2017 American Society for Microbiology.)
- Published
- 2017
- Full Text
- View/download PDF