1. Methane Retrieval from Hyperspectral Infrared Atmospheric Sounder on FY3D.
- Author
-
Zhang, Xinxin, Zhang, Ying, Meng, Fan, Tao, Jinhua, Wang, Hongmei, Wang, Yapeng, and Chen, Liangfu
- Subjects
ATMOSPHERIC methane ,OZONESONDES ,STANDARD deviations ,FOURIER transform spectrometers ,METEOROLOGICAL satellites ,METHANE ,ATMOSPHERIC composition - Abstract
This study utilized an infrared spotlight Hyperspectral infrared Atmospheric Sounder (HIRAS) and the Medium Resolution Spectral Imager (MERSI) mounted on FY3D cloud products from the National Satellite Meteorological Center of China to obtain methane profile information. Methane inversion channels near 7.7 μm were selected based on the different distribution of methane weighting functions across different seasons and latitudes, and the selected retrieval channels had a great sensitivity to methane but not to other parameters. The optimization method was employed to retrieve methane profiles using these channels. The ozone profiles, temperature, and water vapor of the European Centre for Medium-Range Weather Forecasts (ECMWF) fifth-generation reanalysis data (ERA5) were applied to the retrieval process. After validating the methane profile concentrations retrieved by HIRAS, the following conclusions were drawn: (1) compared with Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container (CARIBIC) flight data, the average correlation coefficient, relative difference, and root mean square error were 0.73, 0.0491, and 18.9 ppbv, respectively, with lower relative differences and root mean square errors in low-latitude regions than in mid-latitude regions. (2) The methane profiles retrieved from May 2019 to September 2021 showed an average error within 60 ppbv compared with the Fourier transform infrared spectrometer (FTIR) station observations of the Infrared Working Group (IRWG) of the Network for the Detection of Atmospheric Composition Change (NDACC). The errors between the a priori and retrieved values, as well as between the retrieved and smoothed values, were larger by around 400–500 hPa. Apart from Toronto and Alzomoni, which had larger peak values in autumn and spring respectively, the mean column averaging kernels typically has a larger peak in summer. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF