318 results on '"A. Pourtsidou"'
Search Results
302. Cosmic strings with junctions : dynamics and cosmological implications
- Author
-
Pourtsidou, Alkistis and Pourtsidou, Alkistis
- Abstract
Cosmic strings are linear concentrations of energy that may have been formed after cosmological phase transitions in the early universe. Cosmic superstrings are analogous objects arising in string theory, and in particular in models of brane inflation. The latter possess two particular features, which differentiate them from the ordinary cosmic strings: a reduced intercommuting probability, and the ability to form junctions. This thesis is concerned with the dynamics and cosmological implications of cosmic strings and superstrings with junctions. In Chapter1, we give a brief introduction to the standard Big Bang model and t he inflationary paradigm. W e also discuss cosmic string formation after the spontaneous breaking of an Abelian U (I) gauge symmetry in the early Universe. In Chapter 2, we present an overview of cosmic string dynamics using the Nambu-Goto method. We discuss the properties of individual cosmic string segments and loops, as well as network evolution in an expanding Universe. We also introduce cosmic superstrings, and review the Nambu-Goto approach to study the evolution of junctions and the kinematic constraints that govern their formation. We conclude with the study of junctions in an expanding spacetime and present an exact solution for a closed loop of three strings and two junctions in a de Sitter Universe. In Chapter3, we compare the two different approaches developed to study the dynamics of strings with junctions. We first extensively study the dynamics and stability of a cosmic string loop with junctions using the modified Nambu-Goto approach. Comparing our results with a field theory model that permits junctions we find very good agreement. The Nambu-Goto method is once again confirmed to be a good approximation for studying cosmic string configurations. In Chapter4, we review the observational signatures of cosmic strings. More specifically, we concentrate on their gravitational effects, discussing results and constraints from lensing, g
303. Evolution and stability of cosmic string loops with Y-junctions
- Author
-
Bevis, Neil, Copeland, Edmund J., Martin, Pierre-Yves, Niz, Gustavo, Pourtsidou, Alkistis, Saffin, Paul M., Steer, D.A., Bevis, Neil, Copeland, Edmund J., Martin, Pierre-Yves, Niz, Gustavo, Pourtsidou, Alkistis, Saffin, Paul M., and Steer, D.A.
- Abstract
We study the evolution of non-periodic cosmic string loops containing Y-junctions, such as may form during the evolution of a network of (p,q) cosmic superstrings. We set up and solve the Nambu-Goto equations of motion for a loop with junctions, focusing attention on a specific static and planar initial loop configuration. After a given time, the junctions collide and the Nambu-Goto description breaks down. We also study the same loop configuration in a U(1)xU(1) field theory model that allows composite vortices with corresponding Y-junctions. We show that the field theory and Nambu-Goto evolution are remarkably similar until the collision time. However, in the field theory evolution a new phenomenon occurs: the composite vortices can unzip, producing in the process new Y-junctions, whose separation may grow significantly, destabilizing the configuration. In particular, an initial loop with two Y-junctions may evolve to a configuration with six Y-junctions (all distant from each other). Setting up this new configuration as an initial condition for Nambu Goto strings, we solve for its evolution and establish conditions under which it is stable to the decay mode seen in the field theory case. Remarkably, the condition closely matches that seen in the field theory simulations, and is expressed in terms of simple parameters of the Nambu-Goto system. This implies that there is an easy way to understand the instability in terms of which region of parameter space leads to stable or unstable unzippings.
- Full Text
- View/download PDF
304. Parametrized post-Friedmannian framework for interacting dark energy theories
- Author
-
Skordis, C., Pourtsidou, A., Copeland, Edmund J., Skordis, C., Pourtsidou, A., and Copeland, Edmund J.
- Abstract
We present the most general parametrization of models of dark energy in the form of a scalar field which is explicitly coupled to dark matter. We follow and extend the parametrized post-Friedmannian approach, previously applied to modified gravity theories, in order to include interacting dark energy. We demonstrate its use through a number of worked examples and show how the initially large parameter space of free functions can be significantly reduced and constrained to include only a few nonzero coefficients. This paves the way for a model-independent approach to classify and test interacting dark energy theories.
- Full Text
- View/download PDF
305. Evolution and stability of cosmic string loops with Y-junctions
- Author
-
Bevis, Neil, Copeland, Edmund J., Martin, Pierre-Yves, Niz, Gustavo, Pourtsidou, Alkistis, Saffin, Paul M., Steer, D.A., Bevis, Neil, Copeland, Edmund J., Martin, Pierre-Yves, Niz, Gustavo, Pourtsidou, Alkistis, Saffin, Paul M., and Steer, D.A.
- Abstract
We study the evolution of non-periodic cosmic string loops containing Y-junctions, such as may form during the evolution of a network of (p,q) cosmic superstrings. We set up and solve the Nambu-Goto equations of motion for a loop with junctions, focusing attention on a specific static and planar initial loop configuration. After a given time, the junctions collide and the Nambu-Goto description breaks down. We also study the same loop configuration in a U(1)xU(1) field theory model that allows composite vortices with corresponding Y-junctions. We show that the field theory and Nambu-Goto evolution are remarkably similar until the collision time. However, in the field theory evolution a new phenomenon occurs: the composite vortices can unzip, producing in the process new Y-junctions, whose separation may grow significantly, destabilizing the configuration. In particular, an initial loop with two Y-junctions may evolve to a configuration with six Y-junctions (all distant from each other). Setting up this new configuration as an initial condition for Nambu Goto strings, we solve for its evolution and establish conditions under which it is stable to the decay mode seen in the field theory case. Remarkably, the condition closely matches that seen in the field theory simulations, and is expressed in terms of simple parameters of the Nambu-Goto system. This implies that there is an easy way to understand the instability in terms of which region of parameter space leads to stable or unstable unzippings.
- Full Text
- View/download PDF
306. Parametrized post-Friedmannian framework for interacting dark energy theories
- Author
-
Skordis, C., Pourtsidou, A., Copeland, Edmund J., Skordis, C., Pourtsidou, A., and Copeland, Edmund J.
- Abstract
We present the most general parametrization of models of dark energy in the form of a scalar field which is explicitly coupled to dark matter. We follow and extend the parametrized post-Friedmannian approach, previously applied to modified gravity theories, in order to include interacting dark energy. We demonstrate its use through a number of worked examples and show how the initially large parameter space of free functions can be significantly reduced and constrained to include only a few nonzero coefficients. This paves the way for a model-independent approach to classify and test interacting dark energy theories.
- Full Text
- View/download PDF
307. Update on the BINGO 21cm intensity mapping experiment
- Author
-
Augé, Etienne, Dumarchez, Jacques, Trân Thanh Vân, Jean, Battye, Richard, Browne, Ian, Chen, Tianyue, Dickinson, Clive, Harper, Stuart, Olivari, Lucas, Peel, Michael, Remazeilles, Mathieu, Roychowdhury, Sambit, Wilkinson, Peter, Abdalla, Elcio, Abramo, Raul, Ferreira, Elisa, Wuensche, Alex, Vilella, Thyrso, Caldas, Manuel, Tancredi, Gonzalo, Refregier, Alexandre, Monstein, Christian, Abdalla, Filipe, Pourtsidou, Alkistis, Maffei, Bruno, Pisano, Giampaolo, Ma, Yin-Zhe, Augé, Etienne, Dumarchez, Jacques, Trân Thanh Vân, Jean, Battye, Richard, Browne, Ian, Chen, Tianyue, Dickinson, Clive, Harper, Stuart, Olivari, Lucas, Peel, Michael, Remazeilles, Mathieu, Roychowdhury, Sambit, Wilkinson, Peter, Abdalla, Elcio, Abramo, Raul, Ferreira, Elisa, Wuensche, Alex, Vilella, Thyrso, Caldas, Manuel, Tancredi, Gonzalo, Refregier, Alexandre, Monstein, Christian, Abdalla, Filipe, Pourtsidou, Alkistis, Maffei, Bruno, Pisano, Giampaolo, and Ma, Yin-Zhe
- Abstract
1cm intensity mapping is a novel approach aimed at measuring the power spectrum of density fluctuations and deducing cosmological information, notably from the Baryonic Acoustic Oscillations (BAO). We give an update on the progress of BAO from Integrated Neutral Gas Observations (BINGO) which is a single dish intensity mapping project. First we explain the basic ideas behind intensity mapping concept before updating the instrument design for BINGO. We also outline the survey we plan to make and its projected science output including estimates of cosmological parameters.
308. Euclid preparation
- Author
-
Pocino, A., Tutusaus, I., Castander, F. J., Fosalba, P., Crocce, M., Porredon, A., Camera, S., Cardone, V., Casas, S., Kitching, T., Lacasa, F., Martinelli, M., Pourtsidou, A., Sakr, Z., Andreon, S., Auricchio, N., Baccigalupi, C., Balaguera-Antolínez, A., Baldi, M., Balestra, A., Bardelli, S., Bender, R., Biviano, A., Bodendorf, C., Bonino, D., Boucaud, A., Bozzo, E., Branchini, E., Brescia, M., Brinchmann, J., Burigana, C., Cabanac, R., Capobianco, V., Cappi, A., Carvalho, C. S., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Cledassou, R., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Corcione, L., Costille, A., Coupon, J., Courtois, H. M., Cropper, M., Cuby, J.-G., Da Silva, A., de la Torre, S., Di Ferdinando, D., Dubath, F., Duncan, C., Dupac, X., Dusini, S., Farrens, S., Ferreira, P. G., Ferrero, I., Finelli, F., Fotopoulou, S., Frailis, M., Franceschi, E., Galeotta, S., Garilli, B., Gillard, W., Gillis, B., Giocoli, C., Gozaliasl, G., Graciá-Carpio, J., Grupp, F., Guzzo, L., Holmes, W., Hormuth, F., Jahnke, K., Keihanen, E., Kermiche, S., Kiessling, A., Kirkpatrick, C. C., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lloro, I., Maino, D., Maiorano, E., Mansutti, O., Marggraf, O., Martinet, N., Marulli, F., Massey, R., Maurogordato, S., Medinaceli, E., Mei, S., Meneghetti, M., Benton Metcalf, R., Meylan, G., Moresco, M., Morin, B., Moscardini, L., Munari, E., Nakajima, R., Neissner, C., Nichol, R. C., Niemi, S., Nightingale, J., Padilla, C., Paltani, S., Pasian, F., Patrizii, L., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L., Potter, D., Pozzetti, L., Raison, F., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sánchez, A. G., Sapone, D., Scaramella, R., Schneider, P., Scottez, V., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Sureau, F., Taylor, A. N., Tenti, M., Tereno, I., Teyssier, R., Toledo-Moreo, R., Tramacere, A., Valentijn, E. A., Valenziano, L., Valiviita, J., Vassallo, T., Viel, M., Wang, Y., Welikala, N., Whittaker, L., Zacchei, A., Zamorani, G., Zoubian, J., and Zucca, E.
- Full Text
- View/download PDF
309. Euclid preparation
- Author
-
Blanchard, A., Camera, S., Carbone, C., Cardone, V. F., Casas, S., Clesse, S., Ilić, S., Kilbinger, M., Kitching, T., Kunz, M., Lacasa, F., Linder, E., Majerotto, E., Markovič, K., Martinelli, M., Pettorino, V., Pourtsidou, A., Sakr, Z., Sánchez, A. G., Sapone, D., Tutusaus, I., Yahia-Cherif, S., Yankelevich, V., Andreon, S., Aussel, H., Balaguera-Antolínez, A., Baldi, M., Bardelli, S., Bender, R., Biviano, A., Bonino, D., Boucaud, A., Bozzo, E., Branchini, E., Brau-Nogue, S., Brescia, M., Brinchmann, J., Burigana, C., Cabanac, R., Capobianco, V., Cappi, A., Carretero, J., Carvalho, C. S., Casas, R., Castander, F. J., Castellano, M., Cavuoti, S., Cimatti, A., Cledassou, R., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Corcione, L., Coupon, J., Courtois, H. M., Cropper, M., Da Silva, A., de la Torre, S., Di Ferdinando, D., Dubath, F., Ducret, F., Duncan, C. A. J., Dupac, X., Dusini, S., Fabbian, G., Fabricius, M., Farrens, S., Fosalba, P., Fotopoulou, S., Fourmanoit, N., Frailis, M., Franceschi, E., Franzetti, P., Fumana, M., Galeotta, S., Gillard, W., Gillis, B., Giocoli, C., Gómez-Alvarez, P., Graciá-Carpio, J., Grupp, F., Guzzo, L., Hoekstra, H., Hormuth, F., Israel, H., Jahnke, K., Keihanen, E., Kermiche, S., Kirkpatrick, C. C., Kohley, R., Kubik, B., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lloro, I., Maino, D., Maiorano, E., Marggraf, O., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Mei, S., Mellier, Y., Metcalf, B., Metge, J. J., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Nichol, R. C., Niemi, S., Nucita, A. A., Padilla, C., Paltani, S., Pasian, F., Percival, W. J., Pires, S., Polenta, G., Poncet, M., Pozzetti, L., Racca, G. D., Raison, F., Renzi, A., Rhodes, J., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Schneider, P., Scottez, V., Secroun, A., Sirri, G., Stanco, L., Starck, J.-L., Sureau, F., Tallada-Crespí, P., Tavagnacco, D., Taylor, A. N., Tenti, M., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Valenziano, L., Vassallo, T., Verdoes Kleijn, G. A., Viel, M., Wang, Y., Zacchei, A., Zoubian, J., and Zucca, E.
- Full Text
- View/download PDF
310. The foreground transfer function for H i intensity mapping signal reconstruction: MeerKLASS and precision cosmology applications.
- Author
-
Cunnington, Steven, Wolz, Laura, Bull, Philip, Carucci, Isabella P, Grainge, Keith, Irfan, Melis O, Li, Yichao, Pourtsidou, Alkistis, Santos, Mario G, Spinelli, Marta, and Wang, Jingying
- Subjects
- *
TRANSFER functions , *SIGNAL reconstruction , *PHYSICAL cosmology , *FREE flaps , *POWER spectra , *ERROR functions , *FIDUCIAL markers (Imaging systems) - Abstract
Blind cleaning methods are currently the preferred strategy for handling foreground contamination in single-dish H i intensity mapping surveys. Despite the increasing sophistication of blind techniques, some signal loss will be inevitable across all scales. Constructing a corrective transfer function using mock signal injection into the contaminated data has been a practice relied on for H i intensity mapping experiments. However, assessing whether this approach is viable for future intensity mapping surveys, where precision cosmology is the aim, remains unexplored. In this work, using simulations, we validate for the first time the use of a foreground transfer function to reconstruct power spectra of foreground-cleaned low-redshift intensity maps and look to expose any limitations. We reveal that even when aggressive foreground cleaning is required, which causes |${\gt }\, 50~{{\ \rm per\ cent}}$| negative bias on the largest scales, the power spectrum can be reconstructed using a transfer function to within sub-per cent accuracy. We specifically outline the recipe for constructing an unbiased transfer function, highlighting the pitfalls if one deviates from this recipe, and also correctly identify how a transfer function should be applied in an autocorrelation power spectrum. We validate a method that utilizes the transfer function variance for error estimation in foreground-cleaned power spectra. Finally, we demonstrate how incorrect fiducial parameter assumptions (up to |${\pm }100~{{\ \rm per\ cent}}$| bias) in the generation of mocks, used in the construction of the transfer function, do not significantly bias signal reconstruction or parameter inference (inducing |${\lt }\, 5~{{\ \rm per\ cent}}$| bias in recovered values). [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
311. Cosmic strings with junctions : dynamics and cosmological implications
- Author
-
Pourtsidou, Alkistis
- Subjects
- 520, QB Astronomy
- Abstract
Cosmic strings are linear concentrations of energy that may have been formed after cosmological phase transitions in the early universe. Cosmic superstrings are analogous objects arising in string theory, and in particular in models of brane inflation. The latter possess two particular features, which differentiate them from the ordinary cosmic strings: a reduced intercommuting probability, and the ability to form junctions. This thesis is concerned with the dynamics and cosmological implications of cosmic strings and superstrings with junctions. In Chapter1, we give a brief introduction to the standard Big Bang model and t he inflationary paradigm. W e also discuss cosmic string formation after the spontaneous breaking of an Abelian U (I) gauge symmetry in the early Universe. In Chapter 2, we present an overview of cosmic string dynamics using the Nambu-Goto method. We discuss the properties of individual cosmic string segments and loops, as well as network evolution in an expanding Universe. We also introduce cosmic superstrings, and review the Nambu-Goto approach to study the evolution of junctions and the kinematic constraints that govern their formation. We conclude with the study of junctions in an expanding spacetime and present an exact solution for a closed loop of three strings and two junctions in a de Sitter Universe. In Chapter3, we compare the two different approaches developed to study the dynamics of strings with junctions. We first extensively study the dynamics and stability of a cosmic string loop with junctions using the modified Nambu-Goto approach. Comparing our results with a field theory model that permits junctions we find very good agreement. The Nambu-Goto method is once again confirmed to be a good approximation for studying cosmic string configurations. In Chapter4, we review the observational signatures of cosmic strings. More specifically, we concentrate on their gravitational effects, discussing results and constraints from lensing, gravitational radiation, CMB and pulsar timing. We also present recent results of the case of cosmic (super)-strings with junctions. Chapter5 is concerned with the cosmological implications of cosmic superstring networks. W e first study the scaling patterns of such networks for different values of the string coupling g8, and different charges (p, q) on the strings. We then focus on their CMB signatures and derive upper bounds for the fundamental tension MuF using CMB and pulsar timing constraints. The difference between the scaling behaviour of the networks at high and low values of g, is imprinted as a movement of the position of the peak in the B –mode spectrum. Together with the constraints on GMuF from CMB and pulsar timing, this allows for the exciting possibility to constrain the value of the string coupling g8 using CMB data. We conclude in Chapter 6.
- Published
- 2011
312. Synergies between 21cm & optical surveys for probing large scale cosmic structure
- Author
-
Cunnington, Steve D., Bacon, David James, Bruni, Marco, and Pourtsidou, Alkistis
- Subjects
523.1 - Abstract
We are currently living through an era of precision cosmology where we have gathered a substantial amount of data with the aim of understanding our Universe. However, our current understanding is far from complete as our most successful cosmological model relies on the Universe’s energy-matter content being vastly dominated by components that are not yet detected and not currently compatible with our wider general model of physics. This leaves plenty more investigation to be done and new techniques for probing our Universe are highly sought after. Mapping unresolved neutral hydrogen within galaxies is one of these novel techniques and has been gaining momentum over the last decade. By using the 21 cm signal from neutral hydrogen, which traces the underlying large scale cosmic structure, we can map and statistically analyse 3D density distributions and compare these to theoretical models. I provide a detailed introduction to this novel HI intensity mapping technique in Chapter 2. This thesis also explores what gains can be made by combining HI intensity mapping data with more conventional optical galaxy redshift surveys. There are many reasons why a cross correlation such as this will be beneficial. While the intensity mapping technique is developed and refined, optical data can boost the inherently weak HI signal allowing detection and a deeper understanding of the intensity mapping process. Also in the future, when we have dedicated intensity mapping instruments gathering data, cross-correlations will see reductions in the different systematics which could otherwise dominate the uncertainty in any auto-correlations. With the use of computer simulations, I look to forecast benefits to be gained from this synergy and in Chapter 3 I provide an example of how HI intensity maps can be used to constrain photometric redshifts on optical imaging surveys. The largest problem preventing the success of HI intensity mapping comes from 21 cm foregrounds whose signals dominate by several orders of magnitude over the weak HI cosmological signal. While we have several methods for cleaning these foregrounds, understanding the impact these reconstructions have on the data is crucial and is the key theme in Chapters 4 and 5. Again using computer simulations of cosmological HI intensity mapping signals and their foreground contamination, I show how foregrounds can be removed and with some additional treatment, successfully used in cross-correlation with an optical photometric galaxy survey. This indicates a promising future for cosmology and suggests the next-generation of optical telescopes such as LSST and Euclid, should benefit hugely from synergies with intensity mapping data provided by a next-generation radio telescope such as the SKA.
- Published
- 2019
313. Euclid: Forecasts for k-cut 3×2 Point Statistics
- Author
-
Peter L. Taylor, T. Kitching, V. F. Cardone, A. Ferté, E. M. Huff, F. Bernardeau, J. Rhodes, A. C. Deshpande, I. Tutusaus, Alkistis Pourtsidou, S. Camera, C. Carbone, S. Casas, M. Martinelli, V. Pettorino, Z. Sakr, D. Sapone, V. Yankelevich, N. Auricchio, A. Balestra, C. Bodendorf, D. Bonino, A. Boucaud, Enzo Branchini, M. Brescia, V. Capobianco, J. Carretero, M. Castellano, S. Cavuoti, A. Cimatti, R. Cledassou, G. Congedo, L. Conversi, L. Corcione, Mark Cropper, E. Franceschi, B. Garilli, B. Gillis, C. Giocoli, L. Guzzo, S. V. H. Haugan, W. Holmes, F. Hormuth, Knud Jahnke, S. Kermiche, M. Kilbinger, M. Kunz, H. Kurki-Suonio, S. Ligori, Per B. Lilje, I. Lloro, O. Marggraf, K. Markovic, R. Massey, S. Mei, E. Medinaceli, M. Meneghetti, G. Meylan, M. Moresco, B. Morin, Lauro Moscardini, S. Niemi, C. Padilla, F. Pasian, S. Paltani, K. Pedersen, S. Pires, Will J. Percival, G. Polenta, M. Poncet, L. Popa, F. Raison, M. Roncarelli, E. Rossetti, R. Saglia, Peter Schneider, A. Secroun, G. Seidel, S. Serrano, C. Sirignano, G. Sirri, F. Sureau, P. Tallada Crespí, D. Tavagnacco, A. N. Taylor, H. I. Teplitz, I. Tereno, R. Toledo-Moreo, E. A. Valentijn, L. Valenziano, T. Vassallo, Yun Wang, Jochen Weller, A. Zacchei, and J. Zoubian
- Subjects
Astronomy ,QB1-991 ,Astrophysics ,QB460-466 - Published
- 2021
- Full Text
- View/download PDF
314. Assessing non-linear models for galaxy clustering I: unbiased growth forecasts from multipole expansion
- Author
-
Katarina Markovic, Benjamin Bose, and Alkistis Pourtsidou
- Subjects
Astronomy ,QB1-991 ,Astrophysics ,QB460-466 - Abstract
We assess the performance of the Taruya, Nishimichi and Saito (TNS) model for the halo redshift space power spectrum, focusing on utilising mildly non-linear scales to constrain the growth rate of structure f. Using simulations with volume and number density typical of forthcoming Stage IV galaxy surveys, we determine ranges of validity for the model at redshifts z = 0.5 and z = 1. We proceed to perform a Bayesian MCMC analysis utilising the monopole, quadrupole, and hexadecapole spectra, followed by an exploratory Fisher matrix analysis. As previously noted in other forecasts as well as in real data analyses, we find that including the hexadecapole can significantly improve the constraints. However, a restricted range of scales is required for the hexadecapole in order for the growth parameter estimation to remain unbiased, limiting the improvement. We consistently quantify these effects by employing the multipole expansion formalism in both our Fisher and MCMC forecasts.
- Published
- 2019
- Full Text
- View/download PDF
315. [Untitled]
- Author
-
Achúcarro, A., Silvestri, A., Martinelli, M., Pourtsidou, A., Eliel, E.R., Hoekstra, H., Schalm, K.E., and Leiden University
- Subjects
Gravitational-waves ,Bayesian Statistical Analysis ,Inflation ,Cosmology - Abstract
The ultimate goal of cosmologists is to find a cosmological model able to explain the current observational data. In this sense, the Standard Cosmological model establishes that our universe is mainly composed of two unknown components: a type of matter that is known to only interact through gravitation, Cold Dark Matter, and a substance responsible for the current accelerated expansion of the universe that can be modelled by a cosmological constant. Still, this model, though successful, fails to answer hot-burning questions in the field. For this reason, theoretical cosmologists focus on developing further modifications of the model to test them against astrophysical data and check whether alternative scenarios can provide a better explanation of the observations.This thesis is dedicated to the Bayesian statistical analyses of extensions of the Standard Cosmological model using several astronomical data sets, and to the forecast of new observables and experiments. The first part focuses on data science and inflation, and it aims to constrain inflationary models using advanced inference techniques. The second part of the thesis is dedicated to the novel concept of cross-correlations of gravitational-wave physics and large scale structure observables. The third part of this thesis is dedicated to the incoming ESA Euclid satellite, and in particular, it focuses on a crucial data science analysis software for the mission: the code “Cosmological Likelihood for Observables in Euclid”, also known as CLOE.
- Published
- 2022
316. Playing dice with the universe: Bayesian statistical analyses of cosmological models and new observables
- Author
-
Cañas Herrera, G., Achúcarro, A., Silvestri, A., Martinelli, M., Pourtsidou, A., Eliel, E.R., Hoekstra, H., Schalm, K.E., and Leiden University
- Subjects
Gravitational-waves ,Bayesian Statistical Analysis ,Inflation ,Cosmology - Abstract
The ultimate goal of cosmologists is to find a cosmological model able to explain the current observational data. In this sense, the Standard Cosmological model establishes that our universe is mainly composed of two unknown components: a type of matter that is known to only interact through gravitation, Cold Dark Matter, and a substance responsible for the current accelerated expansion of the universe that can be modelled by a cosmological constant. Still, this model, though successful, fails to answer hot-burning questions in the field. For this reason, theoretical cosmologists focus on developing further modifications of the model to test them against astrophysical data and check whether alternative scenarios can provide a better explanation of the observations.This thesis is dedicated to the Bayesian statistical analyses of extensions of the Standard Cosmological model using several astronomical data sets, and to the forecast of new observables and experiments. The first part focuses on data science and inflation, and it aims to constrain inflationary models using advanced inference techniques. The second part of the thesis is dedicated to the novel concept of cross-correlations of gravitational-wave physics and large scale structure observables. The third part of this thesis is dedicated to the incoming ESA Euclid satellite, and in particular, it focuses on a crucial data science analysis software for the mission: the code “Cosmological Likelihood for Observables in Euclid”, also known as CLOE.
- Published
- 2022
317. The cosmology of asymmetric brane modified gravity
- Author
-
Pourtsidou, Alkistis [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom)]
- Published
- 2009
- Full Text
- View/download PDF
318. Constraints on the Fundamental String Coupling from B-Mode Experiments.
- Author
-
Avgoustidis, A., Copeland, E. J., Moss, A., Pogosian, L., Pourtsidou, A., and Steer, Danièle A.
- Subjects
- *
ATMOSPHERIC density , *COSMIC background radiation , *PARTICLES (Nuclear physics) , *POLARIZATION (Nuclear physics) , *TEMPERATURE - Abstract
We study signatures of cosmic superstring networks containing strings of multiple tensions and Y junctions, on the cosmic microwave background (CMB) temperature and polarization spectra. Focusing on the crucial role of the string coupling constant gs, we show that the number density and energy density of the scaling network are dominated by different types of string in the gs⪡1 and gs⪠1 limits. This can lead to an observable shift in the position of the B-mode peak-a distinct signal leading to a direct constraint on gs. We forecast the joint bounds on gs and the fundamental string tension μF from upcoming and future CMB polarization experiments, as well as the signal to noise in detecting the difference between B-mode signals in the limiting cases of large and small gs. We show that such a detectable shift is within reach of planned experiments. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.