Mn(hfac)(2) and Cu(hfac)(2) form coordination complexes with 5-(4-[N-tert-butyl-N-aminoxyl]phenyl)pyrimidine, PyrimPh-NIT. (Mn[PyrimPh-NIT](hfac)(2))(2) and (Cu[PyrimPh-NIT](hfac)(2))(2), 1 and 2, respectively, are cyclic M(2)L(2) dimers that exhibit strong exchange coupling between the coordinated paramagnetic dication (M) and nitroxide (NIT) unit. The M-NIT exchange is strongly antiferromagnetic (AFM) in 1 and strongly ferromagnetic (FM) in 2. Magnetic susceptibility measurements for 1 were fitted to an AFM spin pairing model with J/k = -0.25 K between Mn-NIT spin sites units. Complex 2 also exhibits AFM spin pairing between S = 1 Cu-NIT spin units that is somewhat field dependent at low temperature. The fit of corrected paramagnetic susceptibility chi(T) to an AFM spin pairing model at 200 Oe yields J/k = (-)3.8 K, quite similar to earlier measurements at 1000 Oe yielding J/k = (-)5.0 K. At 1.40 K, the magnetization of 2 does not approach saturation until somewhat above 170 kOe, giving an S-shaped curve; at 0.55 K, the magnetization curve shows steps characteristic of field-induced crossover between the S = 0 ground state and excited spin states. From the steps in the 0.55 K data, we estimate J/k = (-)3.8-4.0 K for 2, in good agreement with the analysis of chi(T).