Background: Activating mutations in the receptor tyrosine kinase, KIT, are found in the majority of gastrointestinal stromal tumors (GIST) and further secondary resistance mutations in KIT frequently arise upon treatment with tyrosine kinase inhibitors such as imatinib. KIT and its mutant forms are sensitive clients of HSP90 and it has been suggested that HSP90 inhibition could be an effective treatment for both imatinib-sensitive and imatinib-resistant GIST, which can occur simultaneously in different clones within the same patient. Methods: AT13387 is a fragment-derived, potent HSP90 inhibitor, which is currently being evaluated in clinical trials. To evaluate its anti-tumor activity against GIST, AT13387 was tested in both imatinib-sensitive (GIST882, GIST-PSW) and imatinib-resistant (GIST430, GIST48) in vitro and in vivo GIST models. Results: AT13387 inhibited the proliferation of GIST cell lines at sub-100 nM potencies, irrespective of their sensitivity to imatinib. Treatment of GIST882, GIST430 and GIST48 cells with AT13387 induced HSP70, a marker of HSP90 inhibition, whilst reducing the levels of the client proteins KIT, AKT and their phosphorylated forms. A concomitant decrease in the levels of phospho-ERK and phospho-S6 demonstrated that KIT signaling was being inhibited in all cell lines, whilst an increase in cleaved PARP indicated apoptosis. In contrast, treatment with imatinib inhibited KIT signaling only in the imatinib-sensitive line, GIST882. In vivo, the efficacy of AT13387 was tested in imatinib-sensitive (GIST-PSW) and imatinib-resistant (GIST430) xenograft models. AT13387, dosed once a week, inhibited the growth of both xenografts; depletion of phospho-KIT and inhibition of KIT signaling were again seen in these tumors. As expected, treatment with imatinib caused significant regression of the GIST-PSW tumors but not of GIST430. The combination of imatinib and AT13387 significantly enhanced tumor growth inhibition (T/C 21%) over either of the monotherapies (T/C 30% for AT13387, 46% for imatinib) in the GIST430 xenograft. Importantly, the combination was well tolerated. Conclusions: AT13387 is currently being evaluated in a Phase II GIST trial both as single agent and in combination with imatinib. These results support the potential efficacy of the compound in both imatinib-sensitive and imatinib-resistant GIST and its current testing in this disease. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2011 Nov 12-16; San Francisco, CA. Philadelphia (PA): AACR; Mol Cancer Ther 2011;10(11 Suppl):Abstract nr A217.