401. Development of Soil Substitutes for the Sustainable Land Reclamation of Coal Mine-Affected Areas
- Author
-
Arkadiusz Bauerek, Jean Diatta, Łukasz Pierzchała, Angelika Więckol-Ryk, and Alicja Krzemień
- Subjects
Renewable Energy, Sustainability and the Environment ,Geography, Planning and Development ,coal mining by-products ,spoil tips ,land rehabilitation ,Sinapis alba ,Management, Monitoring, Policy and Law - Abstract
The main purpose of this paper was to outline a novel approach for the use of industrial by-products generated in coal mines and coal-fired power plants as the components for artificial soils. Several coal combustion by-products, coal mine waste and organic waste materials were tested at laboratory scale for use in the reclamation of areas degraded by coal mining activity. The role of artificial soils was the land rehabilitation of the high acidic waste heap. The results revealed that the amounts of organic matter (14.87–25.01%) and nutrients in the soil substitutes were sufficient to support plant growth, i.e., N (0.37–0.51%), P (0.23–0.47%), K (1.78–3.17%), Ca (4.93–8.39%) and Mg (1.16–1.71%). A phytotoxicity test using white mustard (Sinapis alba) seeds under laboratory conditions showed good germination results (56–66%) for three soil substitutes that did not contain fly ash from biomass combustion, compared to the reference soil (84%). The relationships established for the aqueous leachate parameters of soil substitutes vs. the Sinapis alba germination revealed negative correlations with electrical conductivity (r = −0.88), SO42− (r = −0.91) and Cl− (r = −0.70) ions; the two latter ones were responsible for the salinity which hampered the germination process of the soil substitutes. Moreover, quite similar correlations were obtained between the germination of Sinapis alba and the trace elements of the soil substitutes: Fe (r = −0.69), Cd (r = −0.72), Cu (r = −0.80), Pb (r = −0.78) and Zn (r = −0.74). However, negative and significant correlations in aqueous leachates were shown only with Ni concentration (r = −0.73). The relevance of these results for the effect of salinity on germination and the early growth of S. alba was discussed in detail and was confirmed with the Principal Component Analysis (PCA). The study proved that the physicochemical characteristic of recycled wastes exhibited their potential usefulness for the reclamation of affected areas such as mine waste heaps.
- Full Text
- View/download PDF