551. Magnetotransportní vlastnosti FeRh nanodrátů
- Author
-
Uhlíř, Vojtěch, Dubroka, Adam, Uhlíř, Vojtěch, and Dubroka, Adam
- Abstract
Železo-rhodium (FeRh) je látka procházející magnetickou fázovou přeměnou prvního druhu z antiferomagnetické (AF) do feromagnetické (FM) fáze, ke které dochází při zahřátí materiálu nad teplotu fázové přeměny nebo působením dostatečně velkého magnetického pole. Tato fázová přeměna je mimo jiné provázena výraznou změnou entropie, magnetizace a elektrického odporu, přičemž její tvar a poloha teploty přeměny je silně závislá na stechiometrii krystalu, na příměsích, tlaku a v případě tenkých vrstev na napjatosti vrstvy způsobené substrátem. Tato práce se zaměřuje na studium magnetotransportních vlastností drátů připravených z tenkých FeRh vrstev rostlých na substrátech indukujících různou napjatost vrstvy. Jedním z hlavních jevů studovaných v této práci je anizotropní magnetorezistance (AMR) projevující se změnou odporu pro různé natočení magnetických momentů v látce vůči směru elektrického proudu. AMR byla studována jak ve FM fázi, tak i v AF fázi FeRh. Byla změřena hodnota AMR ve vysokoteplotní FM fázi a objeveno neočekávané chování AMR ve zbytkové FM fázi v nízkoteplotním stavu. Dále byla pozorována výrazná závislost AMR na orientaci měřených segmentů vůči krystalografickým směrům FeRh., Iron-rhodium (FeRh) is a material undergoing a first order magnetic phase transition from antiferromagnetic (AF) to ferromagnetic (FM) phase which occurs when the material is heated above the transition temperature or by applying a sufficiently large magnetic field. This phase transition is accompanied by a significant change in entropy, magnetization and electric resistivity while the transition temperature is strongly dependent on the crystal stoichiometry, elemental substitution, pressure and in case of thin layers on the strain induced by the substrate. This work is focused on the study of magnetotransport properties of wires patterned from FeRh thin layers grown on substrates inducing different strain in the layer. One of the main effects studied in this work is the anisotropic magnetoresistance (AMR) demonstrated by a change of the resistance for different orientations of the magnetic moments in the material with respect to the electric current direction. The AMR was studied both in the FM and AF phase of FeRh. The AMR of the FM phase in the high temperature phase was measured and an unexpected behavior of the AMR of the residual FM phase of FeRh in the low temperature phase was discovered. A strong dependence of the AMR on the orientation of the measured segment with respect to the crystallographic directions of FeRh was explored.