474 results on '"Vaitheeswaran, G."'
Search Results
452. Exploring Exemplary Optoelectronic and Charge Transport Properties of KCuX(X=Se,Te).
- Author
-
Parveen A and Vaitheeswaran G
- Abstract
We report the electronic structure, optical and charge transport properties of the unexplored ternary Zintl phases KCuX(X=Se,Te) from the first principles calculations employing the full-potential linearized augmented plane-wave (FLAPW) method with the Tran Blaha modified Becke-Johnson (TBmBJ) potential. It is demonstrated that the materials are direct band gap (1.13, 1.38 eV) semiconductors with covalent bonding between Cu and (Se/Te). The calculated low effective mass and high carrier mobility (over 10
5 cm2 /V.s) accentuate that KCuX have good carrier transport and the materials may have possible applications in solar cell absorbers and nanoelectronic devices. Absorption spectra indicates that the ternary crystals are UV-A light absorbers and could be useful in photovoltaic and photodetector applications. A study on the effect of pressure (till 5 GPa) is carried out in order to further explore the materials for their electronic band gaps and charge transport properties as they are proposed to be useful in future contemporary electronic devices. It is observed that pressure enhances the intrinsic carrier mobility and thermal stability of KCuX, indicating that the materials can withstand robust external conditions.- Published
- 2018
- Full Text
- View/download PDF
453. High-Pressure Studies of Hydrogen-Bonded Energetic Material 3,6-Dihydrazino- s -tetrazine Using DFT.
- Author
-
Moses Abraham B, Prathap Kumar J, and Vaitheeswaran G
- Abstract
Hydrogen bonding is an important noncovalent interaction that plays a key role in most of the CHNO-based energetic materials, which has a great impact on the structural, stability, and vibrational properties. By analyzing the structural changes, IR spectra, and the Hirshfeld surfaces, we investigated the high-pressure behavior of 3,6-dihydrazino- s -tetrazine (DHT) to provide detailed description of hydrogen bonding interactions using dispersion-corrected density functional theory. The strengthening of hydrogen bonding is observed by the pressure-induced weakening of covalent N-H bonds, which is consistent with the red shift of NH/NH
2 stretching vibrational modes. The intermolecular interactions in DHT crystals lead to more compact and stable structures that can increase the density but diminish the heat of detonation, Q . The calculated detonation properties of DHT ( D = 7.62 km/s, P = 25.19 GPa) are slightly smaller than those of a similar explosive 3,6-bis-nitroguanyl-1,2,4,5-tetrazine ( D = 7.9 km/s, P = 27.36 GPa). Overall, the crystallographic and spectroscopic results along with Hirshfeld surface analysis as a function of pressure reveal the presence of strong hydrogen bonding networks in the crystal structure of DHT., Competing Interests: The authors declare no competing financial interest.- Published
- 2018
- Full Text
- View/download PDF
454. Topological behaviour of ternary non-symmorphic crystals KZnX (X = P, As, Sb) under pressure and strain: a first principles study.
- Author
-
Parveen A, Narsimha Rao E, Adivaiah B, Anees P, and Vaitheeswaran G
- Abstract
An ab initio study on the impact of hydrostatic pressure and strain on the electronic properties of an unexplored class of ternary Zintl phases KZnX (X = P, As, Sb) is reported. Density functional theory (DFT) based studies revealed that all the three materials are direct band gap semiconductors under ambient conditions. We have theoretically demonstrated that KZnX can be driven into different metallic phases under pressure. In contrast, by applying strain the compounds can be realized as topological insulators. This is confirmed by the observed non-trivial topological character in the electronic band structure of the present ternary systems. For the precise determination of low energy band topology, the Tran Blaha modified Becke-Johnson (TBmBJ) exchange potential was used by incorporating spin-orbit coupling. The concomitant change of electronic band shapes as a function of pressure indicates a semi-metallic nature in KZnX (X = P, As, Sb) at 30 GPa, 21 GPa and 11 GPa respectively. Based on an analysis of the parity eigenvalues, we anticipate that a band inversion occurs between the Zn-s and X-p states, thus demonstrating a weak topological behaviour in semi-metallic states. Also, a weak non-trivial topologically insulating phase is realized in strained KZnAs (18%) and KZnSb (10%) which appears to be due to overlapping of the Zn-s and X-p orbitals. The calculated surface spectral functions further validate the non-triviality of strained KZnX (X = As, Sb), whereas strained KZnP is found to be a trivial insulator. We confirm the topological behaviour of these materials by calculating topological surface states and defining a Z
2 topological invariant. Our work based on sophisticated first-principles calculations highlights that both pressure and strain can trigger topological phases in non-symmorphic trivial band insulators even with a weak spin orbit interaction. This study paves the way for realizing semi-metallic and topological insulating states in non-symmorphic ternary semiconductors, which have not been experimentally demonstrated so far.- Published
- 2018
- Full Text
- View/download PDF
455. Role of spin-orbit interaction on the nonlinear optical response of CsPbCO 3 F using DFT.
- Author
-
Narsimha Rao E, Vaitheeswaran G, Reshak AH, and Auluck S
- Abstract
We explore the effect of spin-orbit interaction (SOI) on the electronic and optical properties of CsPbCO
3 F using the full potential linear augmented plane wave method with the density functional theory (DFT) approach. CsPbCO3 F is known for its high powder second harmonic generation (SHG) coefficient (13.4 times (d36 = 0.39 pm V-1 ) that of KH2 PO4 (KDP)). Calculations are done for many exchange correlation (XC) potentials. After the inclusion of SOI, the calculated Tran-Blaha modified Becke-Johnson (TB-mBJ) band gap of 5.58 eV reduces to 4.45 eV in agreement with the experimental value. This is due to the splitting of Pb p-states. Importantly, the occurrence of a band gap along the H-A direction (indirect) transforms to the H-H (direct) high symmetry points/direction in the first Brillouin zone. We noticed a large anisotropy in the calculated complex dielectric function, absorption, and refractive index spectra. The calculated static birefringence of 0.1049 and 0.1057 (with SOI) is found to be higher than that of the other carbonate fluorides. From the Born effective charge (BEC) analysis we notice that the Cs atom shows a negative contribution to birefringence whereas Pb, C, and F atoms show a positive contribution. In addition, we have also calculated the nonlinear optical χ(-2ω;ω,ω) dispersion of a CsPbCO3 F single crystal. We found that d11 = d12 = 4.35 pm V-1 at 1064 nm, which is 11.2 times higher than d36 of KDP. The origin of the highly nonlinear optical susceptibility dispersion of CsPbCO3 F is explained. Overall, our results are in agreement with experiments and it is obvious from the present study that CsPbCO3 F is a direct band gap, large second harmonic generation, and good phase matchable NLO crystal in the ultraviolet region.- Published
- 2017
- Full Text
- View/download PDF
456. Evidence for the antiferromagnetic ground state of Zr 2 TiAl: a first-principles study.
- Author
-
Reddy PVS, Kanchana V, Vaitheeswaran G, Ruban AV, and Christensen NE
- Abstract
A detailed study on the ternary Zr-based intermetallic compound Zr
2 TiAl has been carried out using first-principles electronic structure calculations. From the total energy calculations, we find an antiferromagnetic L11 -like (AFM) phase with alternating (1 1 1) spin-up and spin-down layers to be a stable phase among some others with magnetic moment on Ti being 1.22 [Formula: see text]. The calculated magnetic exchange interaction parameters of the Heisenberg Hamiltonian and subsequent Heisenberg Monte Carlo simulations confirm that this phase is the magnetic ground structure with Néel temperature between 30 and 100 K. The phonon dispersion relations further confirm the stability of the magnetic phase while the non-magnetic phase is found to have imaginary phonon modes and the same is also found from the calculated elastic constants. The magnetic moment of Ti is found to decrease under pressure eventually driving the system to the non-magnetic phase at around 46 GPa, where the phonon modes are found to be positive indicating stability of the non-magnetic phase. A continuous change in the band structure under compression leads to the corresponding change of the Fermi surface topology and electronic topological transitions (ETT) in both majority and minority spin cases, which are also evident from the calculated elastic constants and density of state calculations for the material under compression.- Published
- 2017
- Full Text
- View/download PDF
457. Two-dimensional silicon and carbon monochalcogenides with the structure of phosphorene.
- Author
-
Rocca D, Abboud A, Vaitheeswaran G, and Lebègue S
- Abstract
Phosphorene has recently attracted significant interest for applications in electronics and optoelectronics. Inspired by this material an ab initio study was carried out on new two-dimensional binary materials with a structure analogous to phosphorene. Specifically, carbon and silicon monochalcogenides have been considered. After structural optimization, a series of binary compounds were found to be dynamically stable in a phosphorene-like geometry: CS, CSe, CTe, SiO, SiS, SiSe, and SiTe. The electronic properties of these monolayers were determined using density functional theory. By using accurate hybrid functionals it was found that these materials are semiconductors and span a broad range of bandgap values and types. Similarly to phosphorene, the computed effective masses point to a strong in-plane anisotropy of carrier mobilities. The variety of electronic properties carried by these compounds have the potential to broaden the technological applicability of two-dimensional materials.
- Published
- 2017
- Full Text
- View/download PDF
458. ZnGeSb 2 : a promising thermoelectric material with tunable ultra-high conductivity.
- Author
-
Sreeparvathy PC, Kanchana V, Vaitheeswaran G, and Christensen NE
- Abstract
First principles calculations predict the promising thermoelectric material ZnGeSb
2 with a huge power factor (S2 σ/τ) on the order of 3 × 1017 W m-1 K-2 s-1 , due to the ultra-high electrical conductivity scaled by a relaxation time of around 8.5 × 1025 Ω-1 m-1 s-1 , observed in its massive Dirac state. The observed electrical conductivity is higher than the well-established Dirac materials, and is almost carrier concentration independent with similar behaviour of both n and p type carriers, which may certainly attract device applications. The low range of thermal conductivity is also evident from the phonon dispersion. Our present study further reports the gradual phase change of ZnGeSb2 from a normal semiconducting state, through massive Dirac states, to a topological semi-metal. The maximum power factor is observed in the massive Dirac states compared to the other two states.- Published
- 2016
- Full Text
- View/download PDF
459. Calculated high-pressure structural properties, lattice dynamics and quasi particle band structures of perovskite fluorides KZnF3, CsCaF3 and BaLiF3.
- Author
-
Vaitheeswaran G, Kanchana V, Zhang X, Ma Y, Svane A, and Christensen NE
- Abstract
A detailed study of the high-pressure structural properties, lattice dynamics and band structures of perovskite structured fluorides KZnF3, CsCaF3 and BaLiF3 has been carried out by means of density functional theory. The calculated structural properties including elastic constants and equation of state agree well with available experimental information. The phonon dispersion curves are in good agreement with available experimental inelastic neutron scattering data. The electronic structures of these fluorides have been calculated using the quasi particle self-consistent [Formula: see text] approximation. The [Formula: see text] calculations reveal that all the fluorides studied are wide band gap insulators, and the band gaps are significantly larger than those obtained by the standard local density approximation, thus emphasizing the importance of quasi particle corrections in perovskite fluorides.
- Published
- 2016
- Full Text
- View/download PDF
460. Predicted superconductivity of Ni2VAl and pressure dependence of superconductivity in Ni2NbX (X = Al, Ga and Sn) and Ni2VAl.
- Author
-
Sreenivasa Reddy PV, Kanchana V, Vaitheeswaran G, and Singh DJ
- Abstract
A first-principles study of the electronic and superconducting properties of the Ni2VAl Heusler compound is presented. The electron-phonon coupling constant of λ(ep)=0.68 is obtained, which leads to a superconducting transition temperature of Tc = ~ 4K (assuming a Coulomb pseudopotential μ(*)=0.13), which is a relatively high transition temperature for Ni based Heusler alloys. The electronic density of states reveals a significant hybridization between Ni-eg and V-t(2g) states around the Fermi level. The Fermi surface, consisting of two electron pockets around the X-points of the Brillouin zone, exhibits nesting and leads to a Kohn anomaly of the phonon dispersion relation for the transverse acoustic mode TA2 along the (1, 1, 0) direction, which is furthermore found to soften with pressure. As a consequence, T(c) and λ(ep) vary non-monotonically under pressure. The calculations are compared to similar calculations performed for the Ni2NbX (X = Al, Ga and Sn) Heusler alloys, which experimentally have been identified as superconductors. The experimental trend in T(c) is well reproduced, and reasonable quantitative agreement is obtained. The calculated T(c) of Ni2VAl is larger than either calculated or observed T(c)s of any of the Nb compounds. The Fermi surfaces of Ni2NbAl and Ni2NbGa consist of only a single electron pocket around the X point, however under compression a second electron pocket similar to that of Ni2VAl emerges Ni2NbAl and the T(c) increases non-monotonically in all the compounds. Fermi surface nesting and associated Kohn anomalies are a common feature of all four compounds, albeit weakest in Ni2VAl.
- Published
- 2016
- Full Text
- View/download PDF
461. Predicted thermoelectric properties of olivine-type Fe2GeCh4 (Ch = S, Se and Te).
- Author
-
Gudelli VK, Kanchana V, and Vaitheeswaran G
- Abstract
We present here the thermoelectric properties of olivine-type Fe2GeCh4 (Ch = S, Se and Te) using the linear augmented plane wave method based on first principles density functional calculations. The calculated transport properties using the semi-local Boltzmann transport equation reveal very high thermopower for both S and Se-based compounds compared to their Te counterparts. The main reason for this high thermopower is the quasi-flat nature of the bands at the valence and conduction band edges. The calculated thermopower of Fe2GeS4 is in good agreement with the experimental reports at room temperature, with the carrier concentration around 10(18)-10(19)cm(-3). All the investigated systems show an anisotropic nature in their electrical conductivity, resulting in a value less than the order of 10(2) along the a-axis compared to the b- and c-axes. Among the studied compounds, Fe2GeS4 and Fe2GeSe4 emerge as promising candidates with good thermoelectric performance.
- Published
- 2016
- Full Text
- View/download PDF
462. Structural, electronic and optical properties of well-known primary explosive: Mercury fulminate.
- Author
-
Yedukondalu N and Vaitheeswaran G
- Abstract
Mercury Fulminate (MF) is one of the well-known primary explosives since 17th century and it has rendered invaluable service over many years. However, the correct molecular and crystal structures are determined recently after 300 years of its discovery. In the present study, we report pressure dependent structural, elastic, electronic and optical properties of MF. Non-local correction methods have been employed to capture the weak van der Waals interactions in layered and molecular energetic MF. Among the non-local correction methods tested, optB88-vdW method works well for the investigated compound. The obtained equilibrium bulk modulus reveals that MF is softer than the well known primary explosives Silver Fulminate (SF), silver azide and lead azide. MF exhibits anisotropic compressibility (b > a > c) under pressure, consequently the corresponding elastic moduli decrease in the following order: C22 > C11 > C33. The structural and mechanical properties suggest that MF is more sensitive to detonate along c-axis (similar to RDX) due to high compressibility of Hg⋯O non-bonded interactions along that axis. Electronic structure and optical properties were calculated including spin-orbit (SO) interactions using full potential linearized augmented plane wave method within recently developed Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. The calculated TB-mBJ electronic structures of SF and MF show that these compounds are indirect bandgap insulators. Also, SO coupling is found to be more pronounced for 4d and 5d-states of Ag and Hg atoms of SF and MF, respectively. Partial density of states and electron charge density maps were used to describe the nature of chemical bonding. Ag-C bond is more directional than Hg-C bond which makes SF to be more unstable than MF. The effect of SO coupling on optical properties has also been studied and found to be significant for both (SF and MF) of the compounds.
- Published
- 2015
- Full Text
- View/download PDF
463. Phase stability and lattice dynamics of ammonium azide under hydrostatic compression.
- Author
-
Yedukondalu N, Vaitheeswaran G, Anees P, and Valsakumar MC
- Abstract
We have investigated the effect of hydrostatic pressure and temperature on phase stability of hydro-nitrogen solids using dispersion corrected density functional theory calculations. From our total energy calculations, ammonium azide (AA) is found to be the thermodynamic ground state of N4H4 compounds in preference to trans-tetrazene (TTZ), hydro-nitrogen solid-1 (HNS-1) and HNS-2 phases. We have carried out a detailed study on structure and lattice dynamics of the equilibrium phase (AA). AA undergoes a phase transition to TTZ at around ∼39-43 GPa followed by TTZ to HNS-1 at around 80-90 GPa under the studied temperature range 0-650 K. The accelerated and decelerated compression of a and c lattice constants suggest that the ambient phase of AA transforms to a tetragonal phase and then to a low symmetry structure with less anisotropy upon further compression. We have noticed that the angle made by type-II azides with the c-axis shows a rapid decrease and reaches a minimum value at 12 GPa, and thereafter increases up to 50 GPa. Softening of the shear elastic moduli is suggestive of a mechanical instability of AA under high pressure. In addition, we have also performed density functional perturbation theory calculations to obtain the vibrational spectrum of AA at ambient as well as at high pressures. Furthermore, we have made a complete assignment of all the vibrational modes which is in good agreement with the experimental observations at ambient pressure. Moreover, the calculated pressure dependent IR spectra show that the N-H stretching frequencies undergo red and blue-shifts corresponding to strengthening and weakening of hydrogen bonding, respectively, below and above 4 GPa. The intensity of the N-H asymmetric stretching mode B2u is found to diminish gradually and the weak coupling between NH4 and N3 ions makes B1u and B3u modes to degenerate with progression of pressure up to 4 GPa which causes weakening of hydrogen bonding and these effects may lead to a structural phase transition in AA around 4 GPa. Furthermore, we have also calculated the phonon dispersion curves at 0 and 6 GPa and no soft phonon mode is observed under high pressure.
- Published
- 2015
- Full Text
- View/download PDF
464. Effect of Pressure on Valence and Structural Properties of YbFe2Ge2 Heavy Fermion Compound--A Combined Inelastic X-ray Spectroscopy, X-ray Diffraction, and Theoretical Investigation.
- Author
-
Kumar RS, Svane A, Vaitheeswaran G, Kanchana V, Antonio D, Cornelius AL, Bauer ED, Xiao Y, and Chow P
- Abstract
The crystal structure and the Yb valence of the YbFe2Ge2 heavy fermion compound was measured at room temperature and under high pressures using high-pressure powder X-ray diffraction and X-ray absorption spectroscopy via both partial fluorescence yield and resonant inelastic X-ray emission techniques. The measurements are complemented by first-principles density functional theoretical calculations using the self-interaction corrected local spin density approximation investigating in particular the magnetic structure and the Yb valence. While the ThCr2Si2-type tetragonal (I4/mmm) structure is stable up to 53 GPa, the X-ray emission results show an increase of the Yb valence from v = 2.72(2) at ambient pressure to v = 2.93(3) at ∼9 GPa, where at low temperature a pressure-induced quantum critical state was reported.
- Published
- 2015
- Full Text
- View/download PDF
465. Structural stability, vibrational, and bonding properties of potassium 1, 1'-dinitroamino-5, 5'-bistetrazolate: An emerging green primary explosive.
- Author
-
Yedukondalu N and Vaitheeswaran G
- Abstract
Potassium 1,1'-dinitroamino-5,5'-bistetrazolate (K2DNABT) is a nitrogen rich (50.3% by weight, K2C2N12O4) green primary explosive with high performance characteristics, namely, velocity of detonation (D = 8.33 km/s), detonation pressure (P = 31.7 GPa), and fast initiating power to replace existing toxic primaries. In the present work, we report density functional theory (DFT) calculations on structural, equation of state, vibrational spectra, electronic structure, and absorption spectra of K2DNABT. We have discussed the influence of weak dispersive interactions on structural and vibrational properties through the DFT-D2 method. We find anisotropic compressibility behavior (b
- Published
- 2015
- Full Text
- View/download PDF
466. Phase transitions in rare earth tellurides under pressure.
- Author
-
Petit L, Svane A, Lüders M, Szotek Z, Vaitheeswaran G, Kanchana V, and Temmerman WM
- Subjects
- Computer Simulation, Electrons, Phase Transition, Pressure, Metals, Rare Earth chemistry, Models, Chemical, Models, Molecular, Tellurium chemistry
- Abstract
Using first-principles calculations we have studied the valence and structural transitions of the rare earth monotellurides RTe (R = Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb) under pressure. The self-interaction corrected local spin-density approximation is used to establish the ground state valence configuration as a function of volume for the RTe in both the NaCl (B1) and CsCl (B2) structures. We find that in ambient conditions all the RTe are stabilized in the B1 structure. A trivalent (R(3+)) rare earth ground state is predicted for the majority of the RTe, with the exception of SmTe, EuTe, DyTe, TmTe and YbTe, where the fully localized divalent (R(2+)) rare earth configuration is found to be energetically most favourable. Under pressure, the trivalent RTe undergo structural transitions to the B2 structure without associated valence transition. The divalent RTe on the other hand are characterized by a competition between the structural and electronic degrees of freedom, and it is the degree of f-electron delocalization that determines the sequence of phase transitions. In EuTe and YbTe, where respectively the half-filled and filled shells result in a very stable divalent configuration, we find that it is the structural B1 → B2 transition that occurs first, followed by the R(2+) → R(3+) valence transition at even higher pressures. In SmTe, DyTe and TmTe, the electronic transition occurs prior to the structural transition. With the exception of YbTe, the calculated transition pressures are found to be in good agreement with experiment.
- Published
- 2014
- Full Text
- View/download PDF
467. Polymorphism and thermodynamic ground state of silver fulminate studied from van der Waals density functional calculations.
- Author
-
Yedukondalu N and Vaitheeswaran G
- Abstract
Silver fulminate (AgCNO) is a primary explosive, which exists in two polymorphic phases, namely, orthorhombic (Cmcm) and trigonal (R3) forms at ambient conditions. In the present study, we have investigated the effect of pressure and temperature on relative phase stability of the polymorphs using planewave pseudopotential approaches based on Density Functional Theory (DFT). van der Waals interactions play a significant role in predicting the phase stability and they can be effectively captured by semi-empirical dispersion correction methods in contrast to standard DFT functionals. Based on our total energy calculations using DFT-D2 method, the Cmcm structure is found to be the preferred thermodynamic equilibrium phase under studied pressure and temperature range. Hitherto Cmcm and R3 phases denoted as α- and β-forms of AgCNO, respectively. Also a pressure induced polymorphic phase transition is seen using DFT functionals and the same was not observed with DFT-D2 method. The equation of state and compressibility of both polymorphic phases were investigated. Electronic structure and optical properties were calculated using full potential linearized augmented plane wave method within the Tran-Blaha modified Becke-Johnson potential. The calculated electronic structure shows that α, β phases are indirect bandgap insulators with a bandgap values of 3.51 and 4.43 eV, respectively. The nature of chemical bonding is analyzed through the charge density plots and partial density of states. Optical anisotropy, electric-dipole transitions, and photo sensitivity to light of the polymorphs are analyzed from the calculated optical spectra. Overall, the present study provides an early indication to experimentalists to avoid the formation of unstable β-form of AgCNO.
- Published
- 2014
- Full Text
- View/download PDF
468. Density functional study of electronic structure, elastic and optical properties of MNH2 (M=Li, Na, K, Rb).
- Author
-
Ramesh Babu K and Vaitheeswaran G
- Subjects
- Elasticity, Models, Chemical, Molecular Structure, Optical Phenomena, Amides chemistry, Electrons, Lithium chemistry, Potassium chemistry, Quantum Theory, Rubidium chemistry, Sodium chemistry
- Abstract
We report a systematic first principles density functional study on the electronic structure, elastic and optical properties of nitrogen based solid hydrogen storage materials LiNH2, NaNH2, KNH2, and RbNH2. The ground state structural properties are calculated by using standard density functional theory, and also dispersion corrected density functional theory. We find that van der Waals interactions are dominant in LiNH2 whereas they are relatively weak in other alkali metal amides. The calculated elastic constants show that all the compounds are mechanically stable and LiNH2 is found to be a stiffer material among the alkali metal amides. The melting temperatures are calculated and follow the order RbNH2 < KNH2 < NaNH2 < LiNH2. The electronic band structure is calculated by using the Tran–Blaha modified Becke–Johnson potential and found that all the compounds are insulators, with a considerable band gap. The [NH2]− derived states completely dominate in the entire valence band region while the metal atom states occupy the conduction band. The calculated band structure is used to analyze the different interband optical transitions occurring between valence and conduction bands. Our calculations show that these materials have considerable optical anisotropy.
- Published
- 2014
- Full Text
- View/download PDF
469. High-pressure study of binary thorium compounds from first principles theory and comparisons with experiment.
- Author
-
Kanchana V, Vaitheeswaran G, Svane A, Heathman S, Gerward L, and Staun Olsen J
- Abstract
The high-pressure structural behaviour of a series of binary thorium compounds ThX (X = C, N, P, As, Sb, Bi, S, Se, Te) is studied using the all-electron full potential linear muffin-tin orbital (FP-LMTO) method within the generalized gradient approximation (GGA) for the exchange and correlation potential. The calculated equlibrium lattice parameters and bulk moduli, as well as the equations of state agree well with experimental results. New experiments are reported for ThBi and ThN. Calculations are performed for the ThX compounds in the NaCl- and CsCl-type crystal structures, and structural phase transitions from NaCl to CsCl are found in ThP, ThAs, ThSb and ThSe at pressures of 26.1, 22.1, 8.1 and 23.2 GPa, respectively, in excellent agreement with experimental results. ThC, ThN and ThS are found to be stable in the NaCl structure, and ThBi and ThTe in the CsCl structure, for pressures below 50 GPa. The electronic structures of the ThX compounds are studied using the quasiparticle self-consistent GW method (G: Green function, W: dynamically screened interaction).
- Published
- 2014
- Full Text
- View/download PDF
470. Structural, vibrational, and quasiparticle band structure of 1,1-diamino-2,2-dinitroethelene from ab initio calculations.
- Author
-
Appalakondaiah S, Vaitheeswaran G, and Lebègue S
- Abstract
The effects of pressure on the structural and vibrational properties of the layered molecular crystal 1,1-diamino-2,2-dinitroethelene (FOX-7) are explored by first principles calculations. We observe significant changes in the calculated structural properties with different corrections for treating van der Waals interactions to Density Functional Theory (DFT), as compared with standard DFT functionals. In particular, the calculated ground state lattice parameters, volume and bulk modulus obtained with Grimme's scheme, are found to agree well with experiments. The calculated vibrational frequencies demonstrate the dependence of the intra and inter-molecular interactions on FOX-7 under pressure. In addition, we also found a significant increment in the N-H...O hydrogen bond strength under compression. This is explained by the change in bond lengths between nitrogen, hydrogen, and oxygen atoms, as well as calculated IR spectra under pressure. Finally, the computed band gap is about 2.3 eV with generalized gradient approximation, and is enhanced to 5.1 eV with the GW approximation, which reveals the importance of performing quasiparticle calculations in high energy density materials.
- Published
- 2014
- Full Text
- View/download PDF
471. A DFT study on structural, vibrational properties, and quasiparticle band structure of solid nitromethane.
- Author
-
Appalakondaiah S, Vaitheeswaran G, and Lebègue S
- Subjects
- Methane chemistry, Molecular Structure, Vibration, Methane analogs & derivatives, Nitroparaffins chemistry, Quantum Theory
- Abstract
We report a detailed theoretical study of the structural and vibrational properties of solid nitromethane using first principles density functional calculations. The ground state properties were calculated using a plane wave pseudopotential code with either the local density approximation, the generalized gradient approximation, or with a correction to include van der Waals interactions. Our calculated equilibrium lattice parameters and volume using a dispersion correction are found to be in reasonable agreement with the experimental results. Also, our calculations reproduce the experimental trends in the structural properties at high pressure. We found a discontinuity in the bond length, bond angles, and also a weakening of hydrogen bond strength in the pressure range from 10 to 12 GPa, picturing the structural transition from phase I to phase II. Moreover, we predict the elastic constants of solid nitromethane and find that the corresponding bulk modulus is in good agreement with experiments. The calculated elastic constants show an order of C11> C22 > C33, indicating that the material is more compressible along the c-axis. We also calculated the zone center vibrational frequencies and discuss the internal and external modes of this material under pressure. From this, we found the softening of lattice modes around 8-11 GPa. We have also attempted the quasiparticle band structure of solid nitromethane with the G0W0 approximation and found that nitromethane is an indirect band gap insulator with a value of the band gap of about 7.8 eV with G0W0 approximation. Finally, the optical properties of this material, namely the absorptive and dispersive part of the dielectric function, and the refractive index and absorption spectra are calculated and the contribution of different transition peaks of the absorption spectra are analyzed. The static dielectric constant and refractive indices along the three inequivalent crystallographic directions indicate that this material has a considerable optical anisotropy.
- Published
- 2013
- Full Text
- View/download PDF
472. Pressure induced structural phase transition in solid oxidizer KClO3: a first-principles study.
- Author
-
Yedukondalu N, Ghule VD, and Vaitheeswaran G
- Abstract
High pressure behavior of potassium chlorate (KClO3) has been investigated from 0 to 10 GPa by means of first principles density functional theory calculations. The calculated ground state parameters, transition pressure, and phonon frequencies using semiempirical dispersion correction scheme are in excellent agreement with experiment. It is found that KClO3 undergoes a pressure induced first order phase transition with an associated volume collapse of 6.4% from monoclinic (P2(1)/m) → rhombohedral (R3m) structure at 2.26 GPa, which is in good accord with experimental observation. However, the transition pressure was found to underestimate (0.11 GPa) and overestimate (3.57 GPa) using local density approximation and generalized gradient approximation functionals, respectively. Mechanical stability of both the phases is explained from the calculated single crystal elastic constants. In addition, the zone center phonon frequencies have been calculated using density functional perturbation theory at ambient as well as at high pressure and the lattice modes are found to soften under pressure between 0.6 and 1.2 GPa. The present study reveals that the observed structural phase transition leads to changes in the decomposition mechanism of KClO3 which corroborates with the experimental results.
- Published
- 2013
- Full Text
- View/download PDF
473. Pressure-induced valence and structural changes in YbMn2Ge2-inelastic X-ray spectroscopy and theoretical investigations.
- Author
-
Kumar RS, Svane A, Vaitheeswaran G, Zhang Y, Kanchana V, Hofmann M, Campbell SJ, Xiao Y, Chow P, Chen C, Zhao Y, and Cornelius AL
- Abstract
The pressure-induced valence change of Yb in YbMn(2)Ge(2) has been studied by high pressure inelastic X-ray emission and absorption spectroscopy in the partial fluorescence yield mode up to 30 GPa. The crystal structure of YbMn(2)Ge(2) has been investigated by high pressure powder X-ray diffraction experiments up to 40 GPa. The experimental investigations have been complemented by first principles density functional theoretical calculations using the generalized gradient approximation with an evolutionary algorithm for structural determination. The Yb valence and magnetic structures have been calculated using the self-interaction corrected local spin density approximation. The X-ray emission results indicate a sharp increase of Yb valence from v = 2.42(2) to v = 2.75(3) around 1.35 GPa, and Yb reaches a near trivalent state (v = 2.95(3)) around 30 GPa. Further, a new monoclinic P1 type high pressure phase is found above 35 GPa; this structure is characterized by the Mn layer of the ambient (I4/mmm) structure transforming into a double layer. The theoretical calculations yield an effective valence of v = 2.48 at ambient pressure in agreement with experiment, although the pure trivalent state is attained theoretically at significantly higher pressures (above 40 GPa).
- Published
- 2013
- Full Text
- View/download PDF
474. Lattice instability and martensitic transformation in LaAg predicted from first-principles theory.
- Author
-
Vaitheeswaran G, Kanchana V, Zhang X, Ma Y, Svane A, and Kaul SN
- Abstract
The electronic structure, elastic constants and lattice dynamics of the B(2) type intermetallic compound LaAg are studied by means of density functional theory calculations with the generalized gradient approximation for exchange and correlation. The calculated equilibrium properties and elastic constants agree well with available experimental data. From the ratio between the bulk and shear moduli, LaAg is found to be ductile, which is unusual for B(2) type intermetallics. The computed band structure shows a dominant contribution from La 5d states near the Fermi level. The phonon dispersion relations, calculated using density functional perturbation theory, are in good agreement with available inelastic neutron scattering data. Under pressure, the phonon dispersions develop imaginary frequencies, starting at around 2.3 GPa, in good accordance with the martensitic instability observed above 3.4 GPa. By structural optimization the high pressure phase is identified as orthorhombic B(19).
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.