76 results on '"Çakallı, Hüseyin"'
Search Results
52. A variation on Abel quasi Cauchy sequences
- Author
-
Çakallı, Hüseyin, primary
- Published
- 2015
- Full Text
- View/download PDF
53. (Pn, s)-Absolute almost convergent sequences
- Author
-
Çakallı, Hüseyin, Çanak, G., and Maltepe Üniversitesi, İnsan ve Toplum Bilimleri Fakültesi
- Abstract
Cakalli(2) generalized the concept of absolute almost convergence due to Das (Mursaleen(5)) to s-absolute almost convergence. In this paper, by-using a condition of Bor(1) we generalize the concept of s-absolute almost convergence to (P-n, s) absolute almost convergence and investigate (P-n, s)-absolutely almost conservative matrices.
- Published
- 1997
54. On Δ-quasi-slowly oscillating sequences
- Author
-
Çakallı, Hüseyin, primary
- Published
- 2011
- Full Text
- View/download PDF
55. δ-quasi-Cauchy sequences
- Author
-
Çakallı, Hüseyi̇n, primary
- Published
- 2011
- Full Text
- View/download PDF
56. OnG-continuity
- Author
-
Çakallı, Hüseyin, primary
- Published
- 2011
- Full Text
- View/download PDF
57. Δ-quasi-slowly oscillating continuity
- Author
-
Çakallı, Hüseyin, primary, Çanak, İbrahim, additional, and Dik, Mehmet, additional
- Published
- 2010
- Full Text
- View/download PDF
58. -quasi-Cauchy sequences
- Author
-
Çakallı, Hüseyi̇n
- Subjects
- *
CAUCHY integrals , *MATHEMATICAL sequences , *CONTINUITY , *REAL numbers , *MATHEMATICAL functions , *BOREL sets - Abstract
Abstract: Recently, it has been proved that a real-valued function defined on a subset of , the set of real numbers, is uniformly continuous on if and only if it is defined on and preserves quasi-Cauchy sequences of points in where a sequence is called quasi-Cauchy if is a null sequence. In this paper we call a real-valued function defined on a subset of -ward continuous if it preserves -quasi-Cauchy sequences where a sequence is defined to be -quasi-Cauchy if the sequence is quasi-Cauchy. It turns out that -ward continuity implies uniform continuity, but there are uniformly continuous functions which are not -ward continuous. A new type of compactness in terms of -quasi-Cauchy sequences, namely -ward compactness is also introduced, and some theorems related to -ward continuity and -ward compactness are obtained. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
59. Asymmetric spaces
- Author
-
Çay, Merve, Çakallı, Hüseyin, and Maltepe Üniversitesi, Lisansüstü Eğitim Enstitüsü
- Subjects
Geri topoloji ,Asymmetric ,Forward topology ,Backward topology ,Asimetrik ,İleri kompaktlık ,Forward compactness ,Backward convergent sequence ,Geri kompaktlık ,İleri yakınsak dizi ,İleri topoloji ,Forward convergent sequence ,Geri yakınsak dizi ,Backward compactness - Abstract
Bir asimetrik uzayda bir dizinin yakınsaklığı ileri topoloji ve geri topolojiye bağlı olduğundan ileri yakınsaklık ve geri yakınsaklık adı verilen iki türlü yakınsaklık türü ortaya çıkar. Bu tez çalışmasında ileri topoloji, geri topoloji, ileri yakınsaklık, geri yakınsaklık, ileri Cauchy dizisi, geri Cauchy dizisi, ileri kompaktlık, geri kompaktlık kavramları ele alınmış ve ilgili teoremler ispatlarıyla birlikte verilmiştir, The topology generated by the forward balls is called forward topology, the topology generated by the backward balls is called backward topology. Convergence of a sequence of points in an asymmetric space depens on forward topology and backward topology, so there are two kinds of convergence of a sequence in an asymmetric space, namely forward convergence and backward convergence.In this thesis we study forward topology, backward topology, forward convergence, backward convergence, forward Cauchyness, backward Cauchyness, forward compactness, backward compactness, and give proofs of related theorems.
- Published
- 2022
60. Compact operators on Riesz difference sequence space of fractional order
- Author
-
Huseyin Cakalli, Taja Yaying, Maltepe Üniversitesi, İnsan ve Toplum Bilimleri Fakültesi, and Çakallı, Hüseyin
- Subjects
Matrix difference equation ,Sequence ,Pure mathematics ,Compact operator ,Space (mathematics) ,Sequence space ,Domain (mathematical analysis) ,α− ,Riesz difference sequence space ,Fractional Difference operator Δ(α) ,Hausdorff measure of non-compactness ,Order (group theory) ,Hausdorff measure ,β− and γ−duals ,Mathematics - Abstract
In this paper we study the domain of generalized Riesz difference matrix RqΔ(α) of fractional order α in the classical sequence spaces c0 and c and introduced the sequence spaces r0 q (Δ(α) ) and rc q (Δ(α) ). We obtain the α−, β− and γ−duals of these spaces and using Hausdorff measure of noncompactness, we characterize certain classes of compact operators on the space r0 q (Δ(α) ). Keywords: Riesz difference sequence space, Fractional Difference operator Δ(α) , α−, β− and γ−duals , Compact operator, Hausdorff measure of non-compactness.
- Published
- 2021
- Full Text
- View/download PDF
61. Δm – weighted statistical convergence
- Author
-
Huseyin Cakalli, Hacer Şengül Kandemir, Mikail Et, Maltepe Üniversitesi, İnsan ve Toplum Bilimleri Fakültesi, and Çakallı, Hüseyin
- Subjects
density ,Weighted statistical convergence ,Cesàro summation ,Applied mathematics ,Statistical convergence ,difference sequence ,Mathematics ,Cesaro summability - Abstract
In this study, we introduce and examine the concepts of Δm−weighted statistical convergence and Δm−weighted N, pn −summability. Also some relations between Δm−weighted statistical convergence and Δm−weighted N, pn −summability are given.
- Published
- 2021
62. On strong Nβp(ρ)-convergence and Sβ (ρ) −convergence
- Author
-
Huseyin Cakalli, Mikail Et, Hacer Şengül Kandemir, Maltepe Üniversitesi, İnsan ve Toplum Bilimleri Fakültesi, and Çakallı, Hüseyin
- Subjects
Sequence ,Pure mathematics ,Statistical convergence ,Convergence (routing) ,Order (group theory) ,Cesàro summation ,Mathematics ,Real number ,Cesaro summability - Abstract
In this paper, we introduce the concept of strong ρ−convergence of order β ( or Nβ p (ρ) −convergence ) of sequence of real numbers and give some inclusion relations between the set of all ρ−statistical convergence of order β and strong Nβ p (ρ)-convergence.
- Published
- 2021
63. Delta quasi Cauchy sequences in metric spaces
- Author
-
Huseyin Cakalli, Maltepe Üniversitesi, İnsan ve Toplum Bilimleri Fakültesi, and Çakallı, Hüseyin
- Subjects
Delta ,Sequence ,Pure mathematics ,metric spaces ,Cauchy distribution ,Function (mathematics) ,Type (model theory) ,continuity ,Cauchy sequence ,Metric space ,Compact space ,sequences ,compactness ,Mathematics - Abstract
t. In this extended abstract, we introduce the concept of delta quasi Cauchy sequences in metric spaces. A function f defined on a subset of a metric space X to X is called delta ward continuous if it preserves delta quasi Cauchy sequences, where a sequence (xk) of points in X is called delta quasi Cauchy if limn→∞[d(xk+2, xk+1)−d(xk+1, xk)] = 0. A new type compactness in terms of δ-quasi Cauchy sequences, namely δ-ward compactness is also introduced, and some theorems related to δ-ward continuity and δ-ward compactness are obtained. Some other types of continuities are also discussed, and interesting results are obtained.
- Published
- 2021
64. Abel statistical quasi Cauchy sequences in 2-normed spaces
- Author
-
Huseyin Cakalli, Sibel Ersan, Maltepe Üniversitesi, İnsan ve Toplum Bilimleri Fakültesi, Ersan, Sibel, and Çakallı, Hüseyin
- Subjects
Pure mathematics ,Sequence ,Compact space ,Cauchy distribution ,Function (mathematics) ,Space (mathematics) ,Cauchy sequence ,Mathematics - Abstract
In this paper, we investigate the concept of Abel statistical ward continuity in 2-normed spaces. A function f defined on a 2-normed space X into X is called Abel statistically ward continuous if it preserves Abel statistical quasi Cauchy sequences, where a sequence (xk) of points in X is called Abel statistically quasi Cauchy if limx→1− (1− x) k:||Δxk ,z||≥ε xk = 0 for every ε > 0 and z ∈ X, where Δxk = xk+1 − xk for every k ∈ N. Some other types of compactness and continuities are also studied and interesting results are obtained.
- Published
- 2021
- Full Text
- View/download PDF
65. An interpretation of G-continuity in neutrosophic soft topological spaces
- Author
-
Ahu Açıkgöz, Ferhat Esenbel, Huseyin Cakalli, Maltepe Üniversitesi, İnsan ve Toplum Bilimleri Fakültesi, Çakallı, Hüseyin, and Fen Edebiyat Fakültesi
- Subjects
Neutrosophic Soft Q-Neighborhood ,Pure mathematics ,neutrosophic soft function ,Group (mathematics) ,neutrosophic soft q-neighborhood ,Neurosophic Soft Cluster Point ,neutrosophic soft quasi-coincidence ,Topological space ,Neutrosophic Soft ,neutrosophic soft method ,Neutrosophic Soft Sequences ,neutrosophic soft group ,Linear subspace ,Interpretation (model theory) ,Neutrosophic Soft Quasi-coincidence ,neutrosophic soft sequential closure ,neutrosophic soft G-sequential continuity ,Linear form ,Neutrosophic soft sequences ,Topological group ,neurosophic soft cluster point ,Topology (chemistry) ,neutrosophic soft boundary point ,Mathematics ,Vector space - Abstract
Açıkgöz, Ahu (Balikesir Author), Scientists have always adopted the concept of sequential continuity as an indispensable subject, not only in Topology but also in some other branches of Mathematics. Connor and Grosse-Erdmann gave this concept for real functions by using an arbitrary linear functional G defined on a linear subspace of the vector space of all real sequences instead of lim. Afterwards, this concept were adapted to a topological group X by replacing a linear functional G with an arbitrary additive function defined on a subgroup of the group of all X-valued sequences. Furthermore, alternative theorems in generalized setting were given and varied theorems that had not been achieved for real functions were presented. In this investigation, we offer neutrosophic soft G-continuity and analyze its nature in neutrosophic soft topological spaces.
- Published
- 2021
66. Abel statistical delta quasi Cauchy sequences in metric spaces
- Author
-
Iffet Taylan, Huseyin Cakalli, Maltepe Üniversitesi, İnsan ve Toplum Bilimleri Fakültesi, and Çakallı, Hüseyin
- Subjects
Abel statistical convergence ,summability ,continuity ,quasi-Cauchy sequences - Abstract
In this paper, we investigate the concept of Abel statistical delta ward compactness and Abel statistical delta ward continuity in metric spaces. A function f defined on a metric space X into X is called Abel statistically delta ward continuous it preserves Abel statistical delta quasi Cauchy sequences, where a sequence (xk) of points in X is called Abel statistically delta quasi Cauchy if limx→1− (1 − x) k:|d(xk+2,xk+1)−d(xk+1,xk )|≥ε xk = 0 for every ε > 0, Some other types of compactnesses are also studied and interesting results are obtained.
- Published
- 2021
- Full Text
- View/download PDF
67. On G-continuity in neutrosophic topological spaces
- Author
-
Huseyin Cakalli, Ferhat Esenbel, Lj. D. R. Kočinac, Ahu Acikgoz, Maltepe Üniversitesi, İnsan ve Toplum Bilimleri Fakültesi, Çakallı, Hüseyin, and Fen Edebiyat Fakültesi
- Subjects
Pure mathematics ,Group (mathematics) ,Neutrosophic Method ,neutrosophic G-sequential continuity ,Neutrosophic G-Sequential Continuity ,Sequential continuity ,Topological space ,Linear subspace ,Neutrosophic Sequential Closure ,neutrosophic method ,Neutrosophic sequential closure ,Additive function ,Linear form ,Neutrosophic Group ,neutrosophic group ,Topological group ,Mathematics ,Vector space - Abstract
Açıkgöz, Ahu (Balikesir Author), Continuity is one of most important concepts in many mathematical disciplines. In some situations general notion of continuity is replaced by sequential continuity. Connor and Grosse-Erdmann replaced lim in the definition of sequential continuity of real functions by a linear functional G on a linear subspace of the vector space of all real sequences. Their definition was extended to topological group X by replacing a linear functional G with an additive function defined on a subgroup of the group of all X-valued sequences. In this paper we introduce neutrosophic G-continuity and investigate its properties in neutrosophic topological spaces.
- Published
- 2020
68. Rho statistical quasi cauchy sequences
- Author
-
Karagöz, Seray, Çakallı, Hüseyin, Maltepe Üniversitesi, Fen Bilimleri Enstitüsü, and Karagöz, Seray
- Subjects
p-istatistiksel quasi-Cauchy dizileri ,Sınırlılık ,p-statistical convergent sequences ,Boundedness ,Düzgün süreklilik ,Statistical ward continuity ,p-istatistiksel ward kompaklık ,p-istatistiksel yakınsak diziler ,p-statistical quasi Cauchy sequences ,Uniform continuity ,p-statistical ward compactness - Abstract
Her n pozitif tamsayısı için ... olmak üzere terimleri reel sayılar kümesinden alınan... pozitif değerli, azalmayan, ... özelliğini sağlayan bir dizi ve ... olsun. Eğer ... oluyorsa ... dizisine... –istatistiksel quasi Cauchy dizisi denir. ...olmak üzere terimleri A kümesinden alınan her dizinin bir ... –istatistiksel quasi Cauchy alt dizisi var ise A kümesine ... –istatistiksel ward kompakt küme denir. Reel sayılar kümesinin bir alt kümesinden reel sayılar kümesinin içine tanımlanan bir fonksiyon ... –istatistiksel quasi Cauchy dizilerini yine bir ρ –istatistiksel quasi Cauchy dizilerine çeviriyor ise bu fonksiyona ... –istatistiksel ward sürekli fonksiyon denir. Yani reel sayıların alt kümelerinden herhangi bir tanesi W olsun ve W kümesinden reel sayıların içine tanımlanan bir f fonksiyonu verilsin. Eğer bu f fonksiyonu W kümesinden alınan her ... –istatistiksel quasi Cauchy dizisini... –istatistiksel quasi Cauchy dizisine dönüştürüyor ise f fonksiyonuna ... –istatistiksel ward sürekli fonksiyon denir. Sınırlı bir küme üzerinde tanımlı düzgün sürekli fonksiyonların kümesi ... –istatistiksel ward sürekli fonksiyonların kümesini kapsar.
- Published
- 2019
69. Variations on rho statistical quasi cauchy sequences
- Author
-
Huseyin Cakalli, Maltepe Üniversitesi, İnsan ve Toplum Bilimleri Fakültesi, Çakallı, Hüseyin, Cakalli, Hüseyin, Cakalli, H, Kocinac, LDR, Harte, R, Cao, J, Savas, E, Ersan, S, Yildiz, S, Maltepe Üniversitesi, and Cakalli, Huseyin
- Subjects
Pure mathematics ,Compact space ,Mathematical sciences ,Series (mathematics) ,Compactness ,Equivalence (measure theory) ,Sequences ,Summability ,Cauchy sequence ,Series ,Mathematics ,Continuity - Abstract
International Conference of Mathematical Sciences (ICMS) -- JUL 31-AUG 06, 2018 -- Maltepe Univ, Istanbul, TURKEY, WOS: 000472950300015, A sequence (alpha(k)) of points in R, the set of real numbers, is called rho-statistically p quasi Cauchy if lim(n ->infinity )1/rho(n) vertical bar{k = epsilon}vertical bar = 0 for each epsilon > 0, where rho = (rho(n)) is a non-decreasing sequence of positive real numbers tending to infinity such that lim sup(n) rho n/n < infinity, Delta rho(n) = O(1), and Delta(p)alpha(k+p) = alpha(k+p) - alpha(k) for each positive integer k, p is a fixed positive integer. A real-valued function defined on a subset of R is called rho-statistically p-ward continuous if it preserves rho-statistical p-quasi Cauchy sequences. We obtain results related to rho-statistical p-ward continuity, rho-statistical p-ward compactness, p-ward continuity, ward continuity, and uniform continuity.
- Published
- 2019
70. Quasi Cauchy sequences
- Author
-
İnce Dağci, Fikriye, Çakallı, Hüseyin, and Matematik Ana Bilim Dalı
- Subjects
Matematik ,Mathematics - Abstract
Terimleri bir metrik uzayından alınan bir dizisinin ardışık terimleri arasındaki uzaklık sıfıra yaklaşıyorsa yani oluyorsa dizisine bir quasi Cauchy dizisi denir. in bir alt kümesinin terimlerinden oluşan her bir dizinin en az bir quasi Cauchy alt dizisi bulunabiliyorsa ye ward kompakttır denir. in bir alt kümesinin total sınırlı olması içingerek ve yeter koşul ward kompakt olmasıdır, yani, in bir alt kümesinin total sınırlı olması için gerek ve yeter koşul terimleri den alınan her bir dizinin en az bir quasi-Cauchy alt dizisinin var olmasıdır. in bir alt kümesi üzerinde tanımlı ve bir metrik uzayı içine bir f fonksiyonu quasi Cauchy dizilerini koruyorsa, yani E de bir quasi Cauchy dizisi olduğunda görüntü dizisi de de bir quasi Cauchy dizisi oluyorsa fonksiyonuna üzerinde ward süreklidir denir. in bir total sınırlı alt kümesi üzerinde tanımlı ye bir fonksiyonunun üzerinde düzgün sürekli olması için gerek ve yeter koşul nin ward sürekli omasıdır. in bir bağlantılı alt kümesi üzerinde tanımlı ve içine bir fonksiyonunun üzerinde düzgün sürekli olması için gerek ve yeter koşul nin ward sürekli olmasıdır. A sequence in a metric space is called a quasi cauchy sequence if distance between successive terms tends to zero, i.e.. A subset E of is called ward compact if any sequence of points in has a quasi Cauchy subsequence. A subset of is ward compact if and only if it is totally bounded, i.e. any sequence of points in has a quasi subsequence ifand only if is totally bounded. A function from a subset of to a metric space is called ward continuous on if preserves quasi Cauchy sequences, i.e. is a quasi Cauchy sequence in whenever is a quasi Cauchy sequence of points in . A function on a totally bounded subset of into is uniformly continuous if and only if it is ward continuous. Afunction on a connected subset of into is uniformly contiuous if and only if it is ward continuous. 51
- Published
- 2019
71. Quasi cauchy sequences
- Author
-
Dağcı, Fikriye İnce, Çakallı, Hüseyin, Maltepe Üniversitesi, Fen Bilimleri Enstitüsü, and Dağcı, Fikriye İnce
- Subjects
ward süreklilik ,düzgün süreklilik ,quasi Cauchy sequence ,kompaktlık ,compactness ,quasi Cauchy dizisi ,continuity ,ward continuity - Abstract
Terimleri bir … metrik uzayından alınan bir … dizisinin ardışık terimleri arasındaki uzaklık sıfıra yaklaşıyorsa yani … oluyorsa … dizisine bir quasi Cauchy dizisi denir. … in bir … alt kümesinin terimlerinden oluşan her bir dizinin en az bir quasi Cauchy alt dizisi bulunabiliyorsa … ye ward kompakttır denir. … in bir … alt kümesinin total sınırlı olması için gerek ve yeter koşul ward kompakt olmasıdır, yani, … in bir … alt kümesinin total sınırlı olması için gerek ve yeter koşul terimleri … den alınan her bir dizinin en az bir quasi-Cauchy alt dizisinin var olmasıdır. … in bir … alt kümesi üzerinde tanımlı ve bir … metrik uzayı içine bir f fonksiyonu quasi Cauchy dizilerini koruyorsa, yani … E de bir quasi Cauchy dizisi olduğunda … görüntü dizisi de … de bir quasi Cauchy dizisi oluyorsa … fonksiyonuna … üzerinde ward süreklidir denir. … in bir total sınırlı alt kümesi üzerinde tanımlı … ye bir … fonksiyonunun … üzerinde düzgün sürekli olması için gerek ve yeter koşul … nin ward sürekli omasıdır. … in bir … bağlantılı alt kümesi üzerinde tanımlı ve … içine bir … fonksiyonunun … üzerinde düzgün sürekli olması için gerek ve yeter koşul … nin ward sürekli olmasıdır., A sequence in a metric space … is called a quasi cauchy sequence if distance between successive terms tends to zero, ... A subset E of … is called ward compact if any sequence of points in … has a quasi Cauchy subsequence. A subset … of … is ward compact if and only if it is totally bounded, i.e. any sequence of points in … has a quasi subsequence if and only if … is totally bounded. A function … from a subset … of … to a metric space … is called ward continuous on … if … preserves quasi Cauchy sequences, … is a quasi Cauchy sequence in … whenever … is a quasi Cauchy sequence of points in ... A function … on a totally bounded subset … of … into … is uniformly continuous if and only if it is ward continuous. A function … on a connected subset … of … into … is uniformly contiuous if and only if it is ward continuous.
- Published
- 2019
72. Normlu uzaylarda istatistiksel yakınsaklık
- Author
-
Apaydin, Abdurrahman, Çakallı, Hüseyin, and Matematik Ana Bilim Dalı
- Subjects
Matematik ,Mathematics - Abstract
Normlu uzaylarda istatistiksel yakınsaklık ile ilgili günümüze kadar yapılmış araştırmaları göz önüne alarak inceleyen bu tez üç bölümden oluşmaktadır.İlk bölüm ön bilgilere ayrılmıştır.İkinci bölümde, genel tanım ve teoremler bulunmaktadır. Üçüncü bölümde, reel terimli istatistiksel yakınsak dizi, normlu uzaylarda istatistiksel yakınsaklık, istatistiksel Cauchy dizisi, istatistiksel kompaktlık, istatistiksel süreklilik, istatistiksel quasi Cauchy, istatistiksel ward kompaktlık, istatistiksel ward süreklilik kavramları tanım ve teoremleri verilmiştir. This thesis which analyzes the researches about statistical convergence in normed space to this date is comprised of three parts.The first part is dedicated to preliminary knowledge.The second part includes the general definitions and theorems.The third part covers the definitions and theorems of real term statistical convergence sequence, statistical convergence in normed space, statistical Cauchy sequence, statistical compactness, statistical continuity, statistical quasi Cauchy, statistical ward compactness, statistical ward continuity. 57
- Published
- 2018
73. On G-continuity
- Author
-
Huseyin Cakalli, Maltepe Üniversitesi, İnsan ve Toplum Bilimleri Fakültesi, Çakallı, Hüseyin, Maltepe Üniversitesi, and Cakalli, Huseyin
- Subjects
Discrete mathematics ,Function space ,Sequences ,Linear subspace ,Sequential closure ,Topological vector space ,Computational Mathematics ,Computational Theory and Mathematics ,Real-valued function ,G-sequential continuity ,Modeling and Simulation ,Linear form ,Homogeneous space ,Topological ring ,Topological group ,Summability ,Series ,Mathematics - Abstract
WOS: 000287553400016, A function f on a topological space is sequentially continuous at a point u if, given a sequence (x(n)), lim x(n) = u implies that lim f (x(n)) f (u). This definition was modified by Connor and Grosse-Erdmann for real functions by replacing lim with an arbitrary linear functional G defined on a linear subspace of the vector space of all real sequences. In this paper, we extend this definition to a topological group X by replacing G. a linear functional, with an arbitrary additive function defined on a subgroup of the group of all X-valued sequences and not only give new theorems in this generalized setting but also present theorems that have not been obtained for real functions so far. (C) 2010 Elsevier Ltd. All rights reserved.
- Published
- 2011
74. Konik metrik uzaylarda kompaktlığın dizisel tanımları
- Author
-
Sönmez, Ayşe, Güzel, Erhan, Çakallı, Hüseyin, and Matematik Anabilim Dalı
- Subjects
Matematik ,Metric spaces ,Compactness ,Metric ,Mathematics ,Paracompact spaces - Abstract
Bu tez çalışmasında, ilk olarak, konik metrik uzaylarda bazı temel sonuçlar ispatlandı. İkinci olarak, normal koniğe sahip konik metrik uzayda bir alt kümenin kapalı olması için gerek ve yeter koşul belirlendikten sonra normal koniğe sahip her konik metrik uzayın parakompakt olduğu ispatlandı. Üçüncü olarak, konik normlu uzay kavramı verildi ve bazı temel özellikler gösterildi. Son olarak, konik normlu uzaylarda ağırlıklı ortalamalar kavramı tanıtıldı ve bu metodların regülerlik koşulu verildi. In this work, firstly, some fundemantal results in cone metric spaces are proved. Secondly, it is proved that cone metric space with normal cone is paracompact after determining a necessary and sufficient condition for a subset of a cone metric space with normal cone to be closed. Thirdly, the concept of cone normed space is given and some basic properties are shown. Lastly, weighted means in cone normed spaces are introduced and a regularity condition of such methods is given. 56
- Published
- 2009
75. Slowly oscillating continuity
- Author
-
Huseyin Cakalli, Maltepe Üniversitesi, Cakalli, H., Maltepe Üniversitesi, İnsan ve Toplum Bilimleri Fakültesi, and Çakallı, Hüseyin
- Subjects
Sequence ,Article Subject ,Applied Mathematics ,lcsh:Mathematics ,Mathematical analysis ,Limit of a sequence ,Function (mathematics) ,lcsh:QA1-939 ,Analysis ,Domain (mathematical analysis) ,Mathematics - Abstract
WOS: 000255607900001, A function f is continuous if and only if, for each point x(0) in the domain, lim(n ->infinity) f (x(n))= f (x(0)), whenever lim(n ->infinity) x(n) = x(0). This is equivalent to the statement that (f(x(n))) is a convergent sequence whenever (x(n)) is convergent. The concept of slowly oscillating continuity is defined in the sense that a function f is slowly oscillating continuous if it transforms slowly oscillating sequences to slowly oscillating sequences, that is, (f(x(n))) is slowly oscillating whenever (x(n)) is slowly oscillating. A sequence (x(n)) of points in R is slowly oscillating if lim(lambda -> 1+)(lim) over bar (n)max(n+1 0's and delta's, this is equivalent to the case when, for any given e > 0, there exist delta = delta(epsilon) > 0 and N = N(epsilon) such that vertical bar x(m) - x(n)vertical bar < epsilon if n >= N(epsilon) and n
- Published
- 2008
76. Hausdorff toplanabilme
- Author
-
Mucuk, Osman, Çakallı, Hüseyin, and Matematik Anabilim Dalı
- Subjects
Matematik ,Mathematics - Abstract
ÖZET Bu tezde Hausdorff matrisleri ile ilgili şimdiye kadar yayınlanmış oian makaleler genel olarak eîe alınmıştır. Birinci bölümde diğer bölümler de kullanılacak olan tanım ve teoremler verilmiştir. İkinci bölümde diziden diziye ve seriden seriye Hausdorff metotları ile ilgili genel teoremler ispat edilmiştir. Aynı zamanda Hardy eşit sizliği ve ters Hardy eşitsizliğinin ispatları da verilmiştir. Son bölümde ise Leininger, Endi, Harrel ve Jakimowski genelleştirmele ri arasındaki bazı özellikler verilmiş ve Leininger Genelleştirilmiş Hausdorff ortalamaları için konservatif îik, regülerlik ile çarpımsailık koşulları araştırılmıştır. S U M M k R Y In this thesis, the papers, concerning Hausdorff matrices, published so far are generally studied. In the first chapter we give the defini tions and theorems which will be used through the other chapters. In the second chapter, general theorems about sequep.ee to sequence and series to series Kausdorff methods are ^proved. We also give the proofs of Hardy's inequality and Hardy's reversed inequality. In the last chapter, certain relations between the generalizations of Leininger, End I, Harrell and Gakimowski are given and the conditions of conservativity, regularity and multiplicavity of Leininger Generalised Hausdorrf means are investigated. 101
- Published
- 1988
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.