51. Searching the solution landscape by generalized high-index saddle dynamics.
- Author
-
Yin, Jianyuan, Yu, Bing, and Zhang, Lei
- Abstract
We introduce a generalized numerical algorithm to construct the solution landscape, which is a pathway map consisting of all stationary points and their connections. Based on the high-index optimization-based shrinking dimer (HiOSD) method for gradient systems, a generalized high-index saddle dynamics (GHiSD) is proposed to compute any-index saddles of dynamical systems. Linear stability of the index-k saddle point can be proved for the GHiSD system. A combination of the downward search algorithm and the upward search algorithm is applied to systematically construct the solution landscape, which not only provides a powerful and efficient way to compute multiple solutions without tuning initial guesses, but also reveals the relationships between different solutions. Numerical examples, including a three-dimensional example and the phase field model, demonstrate the novel concept of the solution landscape by showing the connected pathway maps. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF