51. A Model to Predict the Risk of Keratinocyte Carcinomas
- Author
-
David C. Whiteman, Bridie S. Thompson, Aaron P. Thrift, Maria-Celia Hughes, Chiho Muranushi, Rachel E. Neale, Adele C. Green, Catherine M. Olsen, Penelope M. Webb, Lea M. Jackman, Barbara A. Ranieri, and Rebekah A. Cicero
- Subjects
Adult ,Keratinocytes ,Male ,Oncology ,medicine.medical_specialty ,Skin Neoplasms ,Dermatology ,Risk Assessment ,Biochemistry ,Cohort Studies ,030207 dermatology & venereal diseases ,03 medical and health sciences ,Age Distribution ,0302 clinical medicine ,Predictive Value of Tests ,Internal medicine ,Odds Ratio ,medicine ,Humans ,Prospective Studies ,030212 general & internal medicine ,Sex Distribution ,Prospective cohort study ,Molecular Biology ,Aged ,Receiver operating characteristic ,business.industry ,Incidence ,Biopsy, Needle ,Reproducibility of Results ,Cell Biology ,Odds ratio ,Middle Aged ,Stepwise regression ,Prognosis ,medicine.disease ,Immunohistochemistry ,Confidence interval ,Surgery ,Logistic Models ,Carcinoma, Basal Cell ,Area Under Curve ,Predictive value of tests ,Cohort ,Carcinoma, Squamous Cell ,Female ,Queensland ,Skin cancer ,business - Abstract
Basal cell and squamous cell carcinomas of the skin are the commonest cancers in humans, yet no validated tools exist to estimate future risks of developing keratinocyte carcinomas. To develop a prediction tool, we used baseline data from a prospective cohort study (n = 38,726) in Queensland, Australia, and used data linkage to capture all surgically excised keratinocyte carcinomas arising within the cohort. Predictive factors were identified through stepwise logistic regression models. In secondary analyses, we derived separate models within strata of prior skin cancer history, age, and sex. The primary model included terms for 10 items. Factors with the strongest effects were >20 prior skin cancers excised (odds ratio 8.57, 95% confidence interval [95% CI] 6.73–10.91), >50 skin lesions destroyed (odds ratio 3.37, 95% CI 2.85–3.99), age ≥ 70 years (odds ratio 3.47, 95% CI 2.53–4.77), and fair skin color (odds ratio 1.75, 95% CI 1.42–2.15). Discrimination in the validation dataset was high (area under the receiver operator characteristic curve 0.80, 95% CI 0.79–0.81) and the model appeared well calibrated. Among those reporting no prior history of skin cancer, a similar model with 10 factors predicted keratinocyte carcinoma events with reasonable discrimination (area under the receiver operator characteristic curve 0.72, 95% CI 0.70–0.75). Algorithms using self-reported patient data have high accuracy for predicting risks of keratinocyte carcinomas.
- Published
- 2016
- Full Text
- View/download PDF