356 results on '"Biasotti, M."'
Search Results
52. Muon polarization in the MEG experiment: predictions and measurements: The MEG Collaboration
- Author
-
Baldini, A. M., Bao, Y., Baracchini, E., Bemporad, C., Berg, F., Biasotti, M., Boca, G., Cattaneo, P. W., Cavoto, G., Cei, F., Chiarello, G., Chiri, C., Bari, A. De, Gerone, M. De, D’Onofrio, A., Dussoni, S., Fujii, Y., Galli, L., Gatti, F., Grancagnolo, F., Grassi, M., Graziosi, A., Grigoriev, D. N., Haruyama, T., Hildebrandt, M., Hodge, Z., Ieki, K., Ignatov, F., Iwamoto, T., Kaneko, D., Kang, T. I., Kettle, P.-R., Khazin, B. I., Khomutov, N., Korenchenko, A., Kravchuk, N., Lim, G. M. A., Mihara, S., Molzon, W., Mori, Toshinori, Mtchedlishvili, A., Nakaura, S., Nicolò, D., Nishiguchi, H., Nishimura, M., Ogawa, S., Ootani, W., Panareo, M., Papa, A., Pepino, A., Piredda, G., Pizzigoni, G., Popov, A., Renga, F., Ripiccini, E., Ritt, S., Rossella, M., Rutar, G., Sawada, R., Sergiampietri, F., Signorelli, G., Tassielli, G. F., Tenchini, F., Uchiyama, Y., Venturini, M., Voena, C., Yamamoto, A., Yoshida, K., You, Z., and Yudin, Yu. V.
- Published
- 2016
- Full Text
- View/download PDF
53. Measurement of the radiative decay of polarized muons in the MEG experiment
- Author
-
Baldini, A. M., Bao, Y., Baracchini, E., Bemporad, C., Berg, F., Biasotti, M., Boca, G., Cattaneo, P. W., Cavoto, G., Cei, F., Chiarello, G., Chiri, C., de Bari, A., De Gerone, M., D’Onofrio, A., Dussoni, S., Fujii, Y., Galli, L., Gatti, F., Grancagnolo, F., Grassi, M., Graziosi, A., Grigoriev, D. N., Haruyama, T., Hildebrandt, M., Hodge, Z., Ieki, K., Ignatov, F., Iwamoto, T., Kaneko, D., Kang, Tae Im, Kettle, P.-R., Khazin, B. I., Khomutov, N., Korenchenko, A., Kravchuk, N., Lim, G. M. A., Mihara, S., Molzon, W., Mori, Toshinori, Mtchedlishvili, A., Nakaura, S., Nicolò, D., Nishiguchi, H., Nishimura, M., Ogawa, S., Ootani, W., Panareo, M., Papa, A., Pepino, A., Piredda, G., Pizzigoni, G., Popov, A., Renga, F., Ripiccini, E., Ritt, S., Rossella, M., Rutar, G., Sawada, R., Sergiampietri, F., Signorelli, G., Tassielli, G. F., Tenchini, F., Uchiyama, Y., Venturini, M., Voena, C., Yamamoto, A., Yoshida, K., You, Z., Yudin, Yu. V., and The MEG Collaboration
- Published
- 2016
- Full Text
- View/download PDF
54. TES Microcalorimeters for PTOLEMY
- Author
-
Rajteri, M, Biasotti, M, Faverzani, M, Ferri, E, Filippo, R, Gatti, F, Giachero, A, Monticone, E, Nucciotti, A, Puiu, A, Rajteri M., Biasotti M., Faverzani M., Ferri E., Filippo R., Gatti F., Giachero A., Monticone E., Nucciotti A., Puiu A., Rajteri, M, Biasotti, M, Faverzani, M, Ferri, E, Filippo, R, Gatti, F, Giachero, A, Monticone, E, Nucciotti, A, Puiu, A, Rajteri M., Biasotti M., Faverzani M., Ferri E., Filippo R., Gatti F., Giachero A., Monticone E., Nucciotti A., and Puiu A.
- Abstract
The PTOLEMY project is devoted to directly detect the cosmic neutrino background. A key point for the project success is the development of a device which is capable of detecting electrons with an energy resolution lower than 0.05 eV. Microcalorimeters based on transition-edge sensors are among the best candidates since they already reach 0.11 eV of energy resolution for telecomm photons. To further improve the energy resolution, while maintaining a suitable saturation energy, it is necessary to reduce the transition temperature. This could be achieved by proximity effect of a normal-superconducting bilayer. To this aim, TiAu very thin films are under development to demonstrate the feasibility of reaching 0.05 eV energy resolution for light pulses of few eV. Thanks to the high electron stopping power of metals, the penetration depth of low energy incident electrons is limited to few nanometers and, with respect to visible light, we expect a high detection efficiency, while keeping similar dark counts and energy resolution.
- Published
- 2020
55. Progress Report on the Large-Scale Polarization Explorer
- Author
-
Lamagna, L, Addamo, G, Ade, P, Baccigalupi, C, Baldini, A, Battaglia, P, Battistelli, E, Baù, A, Bersanelli, M, Biasotti, M, Boragno, C, Boscaleri, A, Caccianiga, B, Caprioli, S, Cavaliere, F, Cei, F, Cleary, K, Columbro, F, Coppi, G, Coppolecchia, A, Corsini, D, Cuttaia, F, D’Alessandro, G, de Bernardis, P, De Gasperis, G, De Petris, M, Torto, F, Fafone, V, Farooqui, Z, Farsian, F, Fontanelli, F, Franceschet, C, Gaier, T, Gatti, F, Genova-Santos, R, Gervasi, M, Ghigna, T, Grassi, M, Grosso, D, Incardona, F, Jones, M, Kangaslahti, P, Krachmalnicoff, N, Mainini, R, Maino, D, Mandelli, S, Maris, M, Masi, S, Matarrese, S, May, A, Mena, P, Mennella, A, Molina, R, Molinari, D, Morgante, G, Nati, F, Natoli, P, Pagano, L, Paiella, A, Paonessa, F, Passerini, A, Perez-de-Taoro, M, Peverini, O, Pezzotta, F, Piacentini, F, Piccirillo, L, Pisano, G, Polastri, L, Polenta, G, Poletti, D, Presta, G, Realini, S, Reyes, N, Rocchi, A, Rubino-Martin, J, Sandri, M, Sartor, S, Schillaci, A, Signorelli, G, Soria, M, Spinella, F, Tapia, V, Tartari, A, Taylor, A, Terenzi, L, Tomasi, M, Tommasi, E, Tucker, C, Vaccaro, D, Vigano, D, Villa, F, Virone, G, Vittorio, N, Volpe, A, Watkins, B, Zacchei, A, Zannoni, M, Lamagna, L., Addamo, G., Ade, P. A. R., Baccigalupi, C., Baldini, A. M., Battaglia, P. M., Battistelli, E., Baù, A., Bersanelli, M., Biasotti, M., Boragno, C., Boscaleri, A., Caccianiga, B., Caprioli, S., Cavaliere, F., Cei, F., Cleary, K. A., Columbro, F., Coppi, G., Coppolecchia, A., Corsini, D., Cuttaia, F., D’Alessandro, G., de Bernardis, P., De Gasperis, G., De Petris, M., Torto, F. Del, Fafone, V., Farooqui, Z., Farsian, F., Fontanelli, F., Franceschet, C., Gaier, T. C., Gatti, F., Genova-Santos, R., Gervasi, M., Ghigna, T., Grassi, M., Grosso, D., Incardona, F., Jones, M., Kangaslahti, P., Krachmalnicoff, N., Mainini, R., Maino, D., Mandelli, S., Maris, M., Masi, S., Matarrese, S., May, A., Mena, P., Mennella, A., Molina, R., Molinari, D., Morgante, G., Nati, F., Natoli, P., Pagano, L., Paiella, A., Paonessa, F., Passerini, A., Perez-de-Taoro, M., Peverini, O. A., Pezzotta, F., Piacentini, F., Piccirillo, L., Pisano, G., Polastri, L., Polenta, G., Poletti, D., Presta, G., Realini, S., Reyes, N., Rocchi, A., Rubino-Martin, J. A., Sandri, M., Sartor, S., Schillaci, A., Signorelli, G., Soria, M., Spinella, F., Tapia, V., Tartari, A., Taylor, A., Terenzi, L., Tomasi, M., Tommasi, E., Tucker, C., Vaccaro, D., Vigano, D. M., Villa, F., Virone, G., Vittorio, N., Volpe, A., Watkins, B., Zacchei, A., Zannoni, M., Lamagna, L, Addamo, G, Ade, P, Baccigalupi, C, Baldini, A, Battaglia, P, Battistelli, E, Baù, A, Bersanelli, M, Biasotti, M, Boragno, C, Boscaleri, A, Caccianiga, B, Caprioli, S, Cavaliere, F, Cei, F, Cleary, K, Columbro, F, Coppi, G, Coppolecchia, A, Corsini, D, Cuttaia, F, D’Alessandro, G, de Bernardis, P, De Gasperis, G, De Petris, M, Torto, F, Fafone, V, Farooqui, Z, Farsian, F, Fontanelli, F, Franceschet, C, Gaier, T, Gatti, F, Genova-Santos, R, Gervasi, M, Ghigna, T, Grassi, M, Grosso, D, Incardona, F, Jones, M, Kangaslahti, P, Krachmalnicoff, N, Mainini, R, Maino, D, Mandelli, S, Maris, M, Masi, S, Matarrese, S, May, A, Mena, P, Mennella, A, Molina, R, Molinari, D, Morgante, G, Nati, F, Natoli, P, Pagano, L, Paiella, A, Paonessa, F, Passerini, A, Perez-de-Taoro, M, Peverini, O, Pezzotta, F, Piacentini, F, Piccirillo, L, Pisano, G, Polastri, L, Polenta, G, Poletti, D, Presta, G, Realini, S, Reyes, N, Rocchi, A, Rubino-Martin, J, Sandri, M, Sartor, S, Schillaci, A, Signorelli, G, Soria, M, Spinella, F, Tapia, V, Tartari, A, Taylor, A, Terenzi, L, Tomasi, M, Tommasi, E, Tucker, C, Vaccaro, D, Vigano, D, Villa, F, Virone, G, Vittorio, N, Volpe, A, Watkins, B, Zacchei, A, Zannoni, M, Lamagna, L., Addamo, G., Ade, P. A. R., Baccigalupi, C., Baldini, A. M., Battaglia, P. M., Battistelli, E., Baù, A., Bersanelli, M., Biasotti, M., Boragno, C., Boscaleri, A., Caccianiga, B., Caprioli, S., Cavaliere, F., Cei, F., Cleary, K. A., Columbro, F., Coppi, G., Coppolecchia, A., Corsini, D., Cuttaia, F., D’Alessandro, G., de Bernardis, P., De Gasperis, G., De Petris, M., Torto, F. Del, Fafone, V., Farooqui, Z., Farsian, F., Fontanelli, F., Franceschet, C., Gaier, T. C., Gatti, F., Genova-Santos, R., Gervasi, M., Ghigna, T., Grassi, M., Grosso, D., Incardona, F., Jones, M., Kangaslahti, P., Krachmalnicoff, N., Mainini, R., Maino, D., Mandelli, S., Maris, M., Masi, S., Matarrese, S., May, A., Mena, P., Mennella, A., Molina, R., Molinari, D., Morgante, G., Nati, F., Natoli, P., Pagano, L., Paiella, A., Paonessa, F., Passerini, A., Perez-de-Taoro, M., Peverini, O. A., Pezzotta, F., Piacentini, F., Piccirillo, L., Pisano, G., Polastri, L., Polenta, G., Poletti, D., Presta, G., Realini, S., Reyes, N., Rocchi, A., Rubino-Martin, J. A., Sandri, M., Sartor, S., Schillaci, A., Signorelli, G., Soria, M., Spinella, F., Tapia, V., Tartari, A., Taylor, A., Terenzi, L., Tomasi, M., Tommasi, E., Tucker, C., Vaccaro, D., Vigano, D. M., Villa, F., Virone, G., Vittorio, N., Volpe, A., Watkins, B., Zacchei, A., and Zannoni, M.
- Abstract
The large-scale polarization explorer (LSPE) is a cosmology program for the measurement of large-scale curl-like features (B-modes) in the polarization of the cosmic microwave background. Its goal is to constrain the background of inflationary gravity waves traveling through the universe at the time of matter-radiation decoupling. The two instruments of LSPE are meant to synergically operate by covering a large portion of the northern microwave sky. LSPE/STRIP is a coherent array of receivers planned to be operated from the Teide Observatory in Tenerife, for the control and characterization of the low-frequency polarized signals of galactic origin; LSPE/SWIPE is a balloon-borne bolometric polarimeter based on 330 large throughput multi-moded detectors, designed to measure the CMB polarization at 150 GHz and to monitor the polarized emission by galactic dust above 200 GHz. The combined performance and the expected level of systematics mitigation will allow LSPE to constrain primordial B-modes down to a tensor/scalar ratio of 10^−2. We here report the status of the STRIP pre-commissioning phase and the progress in the characterization of the key subsystems of the SWIPE payload (namely the cryogenic polarization modulation unit and the multi-moded TES pixels) prior to receiver integration.
- Published
- 2020
56. Transition-Edge Sensors for HOLMES
- Author
-
Puiu, A, Becker, D, Bennett, D, Biasotti, M, Borghesi, M, De Gerone, M, Faverzani, M, Ferri, E, Fowler, J, Gallucci, G, Gard, J, Gatti, F, Hilton, G, Giachero, A, Mates, J, Nucciotti, A, Pessina, G, Schmidt, D, Swetz, D, Ullom, J, Vale, L, Puiu A., Becker D., Bennett D., Biasotti M., Borghesi M., De Gerone M., Faverzani M., Ferri E., Fowler J., Gallucci G., Gard J., Gatti F., Hilton G., Giachero A., Mates J., Nucciotti A., Pessina G., Schmidt D., Swetz D., Ullom J., Vale L., Puiu, A, Becker, D, Bennett, D, Biasotti, M, Borghesi, M, De Gerone, M, Faverzani, M, Ferri, E, Fowler, J, Gallucci, G, Gard, J, Gatti, F, Hilton, G, Giachero, A, Mates, J, Nucciotti, A, Pessina, G, Schmidt, D, Swetz, D, Ullom, J, Vale, L, Puiu A., Becker D., Bennett D., Biasotti M., Borghesi M., De Gerone M., Faverzani M., Ferri E., Fowler J., Gallucci G., Gard J., Gatti F., Hilton G., Giachero A., Mates J., Nucciotti A., Pessina G., Schmidt D., Swetz D., Ullom J., and Vale L.
- Abstract
HOLMES is an experiment aiming at performing a direct measurement of the neutrino mass from the electron capture (EC) spectrum of 163Ho. In order to reach a sensitivity of the order of ∼ 1 eV/c2 on the neutrino mass, it is necessary to gather as many as 10 13 events in the 3-year projected live time of HOLMES, keeping the pileup fraction as low as 10 - 4. This is not a trivial matter when it comes to low- temperature calorimeters, which usually have a rather slow time response. At the same time, a large number of detectors need to be operated simultaneously, and hence, in order to avoid an extremely large cryogenic facility, multiplexing is required. In this contribution, I will outline the current status and perspective of HOLMES, with special care devoted to the detectors and readout system, which have currently reached their target performance
- Published
- 2020
57. Status of the HOLMES Experiment
- Author
-
Faverzani, M, Alpert, B, Balata, M, Backer, D, Bennet, D, Bevilaqua, A, Biasotti, M, Borghesi, M, Ceruti, G, De Gerone, M, Dressler, R, Ferri, E, Fowler, J, Gallucci, G, Gard, J, Gatti, F, Giachero, A, Heinitz, S, Hilton, G, Köster, U, Lusignoli, M, Mates, J, Maugeri, E, Nisi, S, Nucciotti, A, Parodi, L, Pessina, G, Puiu, A, Ragazzi, S, Reintsema, C, Ribeiro-Gomez, M, Schmidt, D, Schumann, D, Siccardi, F, Swetz, D, Ullom, J, Vale, L, Faverzani, M., Alpert, B., Balata, M., Backer, D., Bennet, D., Bevilaqua, A., Biasotti, M., Borghesi, M., Ceruti, G., De Gerone, M., Dressler, R., Ferri, E., Fowler, J., Gallucci, G., Gard, J., Gatti, F., Giachero, A., Heinitz, S., Hilton, G., Köster, U., Lusignoli, M., Mates, J., Maugeri, E., Nisi, S., Nucciotti, A., Parodi, L., Pessina, G., Puiu, A., Ragazzi, S., Reintsema, C., Ribeiro-Gomez, M., Schmidt, D., Schumann, D., Siccardi, F., Swetz, D., Ullom, J., Vale, L., Faverzani, M, Alpert, B, Balata, M, Backer, D, Bennet, D, Bevilaqua, A, Biasotti, M, Borghesi, M, Ceruti, G, De Gerone, M, Dressler, R, Ferri, E, Fowler, J, Gallucci, G, Gard, J, Gatti, F, Giachero, A, Heinitz, S, Hilton, G, Köster, U, Lusignoli, M, Mates, J, Maugeri, E, Nisi, S, Nucciotti, A, Parodi, L, Pessina, G, Puiu, A, Ragazzi, S, Reintsema, C, Ribeiro-Gomez, M, Schmidt, D, Schumann, D, Siccardi, F, Swetz, D, Ullom, J, Vale, L, Faverzani, M., Alpert, B., Balata, M., Backer, D., Bennet, D., Bevilaqua, A., Biasotti, M., Borghesi, M., Ceruti, G., De Gerone, M., Dressler, R., Ferri, E., Fowler, J., Gallucci, G., Gard, J., Gatti, F., Giachero, A., Heinitz, S., Hilton, G., Köster, U., Lusignoli, M., Mates, J., Maugeri, E., Nisi, S., Nucciotti, A., Parodi, L., Pessina, G., Puiu, A., Ragazzi, S., Reintsema, C., Ribeiro-Gomez, M., Schmidt, D., Schumann, D., Siccardi, F., Swetz, D., Ullom, J., and Vale, L.
- Abstract
The absolute neutrino mass is still an unknown parameter in the modern landscape of particle physics. The HOLMES experiment aims at exploiting the calorimetric approach to directly measure the neutrino mass through the kinematic measurement of the decay products of the weak process decay of 163Ho. This low energy decaying isotope, in fact, undergoes electron capture emitting a neutrino and leaving the daughter atom, 163Dy∗, in an atomic excited state. This, in turn, relaxes by emitting electrons and, to a considerably lesser extent, photons. The high-energy portion of the calorimetric spectrum of this decay is affected by the non-vanishing neutrino mass value. Given the small fraction of events falling within the region of interest, to achieve a high experimental sensitivity on the neutrino mass, it is important to have a high activity combined with a very small undetected pileup contribution. To achieve these targets, the final configuration of HOLMES foresees the deployment of a large number of 163Ho ion-implanted TESs characterized by an ambitiously high activity of 300 Hz each. In this paper, we outline the status of the major tasks that will bring HOLMES to achieve a statistical sensitivity on the neutrino mass as low as 2 eV/c2.
- Published
- 2020
58. Probing the absolute neutrino mass scale with the 163Ho: The HOLMES project
- Author
-
Gerone, M, Alpert, B, Becker, D, Bennett, D, Biasotti, M, Ceriale, V, Dressier, R, Faverzani, M, Ferri, E, Fowler, J, Gallucci, G, Gard, J, Gatti, F, Giachero, A, Hays-Wehle, J, Heinitz, S, Hilton, G, Koester, U, Lusignoli, M, Mates, J, Nisi, S, Orlando, A, Pessina, G, Puiu, A, Ragazzi, S, Reintsema, C, Ribeiro-Gomes, M, Schmidt, D, Schumann, D, Swetz, D, Ullom, J, Vale, L, Gerone M. D., Alpert B., Becker D., Bennett D., Biasotti M., Ceriale V., Dressier R., Faverzani M., Ferri E., Fowler J., Gallucci G., Gard J., Gatti F., Giachero A., Hays-Wehle J., Heinitz S., Hilton G., Koester U., Lusignoli M., Mates J., Nisi S., Orlando A., Pessina G., Puiu A., Ragazzi S., Reintsema C., Ribeiro-Gomes M., Schmidt D., Schumann D., Swetz D., Ullom J., Vale L., Gerone, M, Alpert, B, Becker, D, Bennett, D, Biasotti, M, Ceriale, V, Dressier, R, Faverzani, M, Ferri, E, Fowler, J, Gallucci, G, Gard, J, Gatti, F, Giachero, A, Hays-Wehle, J, Heinitz, S, Hilton, G, Koester, U, Lusignoli, M, Mates, J, Nisi, S, Orlando, A, Pessina, G, Puiu, A, Ragazzi, S, Reintsema, C, Ribeiro-Gomes, M, Schmidt, D, Schumann, D, Swetz, D, Ullom, J, Vale, L, Gerone M. D., Alpert B., Becker D., Bennett D., Biasotti M., Ceriale V., Dressier R., Faverzani M., Ferri E., Fowler J., Gallucci G., Gard J., Gatti F., Giachero A., Hays-Wehle J., Heinitz S., Hilton G., Koester U., Lusignoli M., Mates J., Nisi S., Orlando A., Pessina G., Puiu A., Ragazzi S., Reintsema C., Ribeiro-Gomes M., Schmidt D., Schumann D., Swetz D., Ullom J., and Vale L.
- Abstract
The HOLMES project aims to directly measure the electron neutrino mass using the electron capture decay (EC) of 163Ho down to the eV scale. It will perform a precise measurement of the end-point of the 163Ho calorimetric energy spectrum to search for the deformation caused by a finite electron neutrino mass. The choice of 163Ho as source is driven by the very low Q-value of the EC reaction (around 2.8 keV), which allows for a high sensitivity while keeping the overall activities to reasonable value (O(102)Hz/detector), thus reducing the pile-up probability. A large array made of thousands of Transition Edge Sensor based micro-calorimeters will be used for a calorimetric measurement of the EC 163Ho spectrum. The calorimetric approach, with the source embedded inside the detector, eliminates systematic uncertainties arising from the use of an external beta-source, and minimizes the effect of the atomic de-excitation process uncertainties. The commissioning of the first implanted sub-Array is scheduled for the end of 2017. It will provide useful data about the EC decay of 163Ho together with a first limit on neutrino mass. In this paper the current status of the main tasks will be summarized: The TES array design and engineering, the isotope preparation and embedding, and the development of a high speed multiplexed SQUID read-out system for the data acquisition.
- Published
- 2020
59. HOLMES: The electron capture decay of163Ho to measure the electron neutrino mass with sub-eV sensitivity
- Author
-
Alpert, B., Balata, M., Bennett, D., Biasotti, M., Boragno, C., Brofferio, C., Ceriale, V., Corsini, D., Day, P. K., De Gerone, M., Dressler, R., Faverzani, M., Ferri, E., Fowler, J., Gatti, F., Giachero, A., Hays-Wehle, J., Heinitz, S., Hilton, G., Köster, U., Lusignoli, M., Maino, M., Mates, J., Nisi, S., Nizzolo, R., Nucciotti, A., Pessina, G., Pizzigoni, G., Puiu, A., Ragazzi, S., Reintsema, C., Gomes, M. Ribeiro, Schmidt, D., Schumann, D., Sisti, M., Swetz, D., Terranova, F., and Ullom, J.
- Published
- 2015
- Full Text
- View/download PDF
60. Status of the HOLMES experiment: commissioning of the ion implanter
- Author
-
Gallucci, Giovanni, primary, Bevilacqua, A., additional, Biasotti, M., additional, Borghesi, M., additional, Cerbone, N., additional, Ceruti, G., additional, De Bodin De Galembert, G, additional, De Gerone, M, additional, Faverzani, M., additional, Fedkevych, M., additional, Ferri, E., additional, Gatti, F., additional, Giachero, A., additional, Maugeri, E. A., additional, Manfrinetti, P., additional, Nucciotti, A., additional, Parodi, L., additional, Pessina, G., additional, Schumann, D., additional, and Siccardi, F., additional
- Published
- 2022
- Full Text
- View/download PDF
61. Thermal Properties of Holmium-Implanted Gold Films
- Author
-
Prasai, K., Alves, E., Bagliani, D., Yanardag, S. Basak, Biasotti, M., Galeazzi, M., Gatti, F., Gomes, M. Ribeiro, Rocha, J., and Uprety, Y.
- Published
- 2014
- Full Text
- View/download PDF
62. The Cryogenic AntiCoincidence Detector Project for ATHENA+: An Overview Up to the Present Status
- Author
-
Macculi, C., Piro, L., Colasanti, L., Lotti, S., Natalucci, L., Bagliani, D., Biasotti, M., Gatti, F., Torrioli, G., Barbera, M., Mineo, T., and Perinati, E.
- Published
- 2014
- Full Text
- View/download PDF
63. Probing the absolute neutrino mass scale with 163Ho: The HOLMES project
- Author
-
De Gerone, M, Alpert, B, Becker, D, Bennett, D, Biasotti, M, Ceriale, V, Dressler, R, Faverzani, M, Ferri, E, Fowler, J, Gallucci, G, Gard, J, Gatti, F, Giachero, A, Hays-Wehle, J, Heinitz, S, Hilton, G, Koester, U, Lusignoli, M, Mates, J, Nucciotti, A, Nisi, S, Orlando, A, Pessina, G, Puiu, A, Ragazzi, S, Reintsema, C, Ribeiro Gomes, M, Schmidt, D, Schumann, D, Swetz, D, Ullom, J, Vale, L, De Gerone M., Alpert B., Becker D., Bennett D., Biasotti M., Ceriale V., Dressler R., Faverzani M., Ferri E., Fowler J., Gallucci G., Gard J., Gatti F., Giachero A., Hays-Wehle J., Heinitz S., Hilton G., Koester U., Lusignoli M., Mates J., Nucciotti A., Nisi S., Orlando A., Pessina G., Puiu A., Ragazzi S., Reintsema C., Ribeiro Gomes M., Schmidt D., Schumann D., Swetz D., Ullom J., Vale L., De Gerone, M, Alpert, B, Becker, D, Bennett, D, Biasotti, M, Ceriale, V, Dressler, R, Faverzani, M, Ferri, E, Fowler, J, Gallucci, G, Gard, J, Gatti, F, Giachero, A, Hays-Wehle, J, Heinitz, S, Hilton, G, Koester, U, Lusignoli, M, Mates, J, Nucciotti, A, Nisi, S, Orlando, A, Pessina, G, Puiu, A, Ragazzi, S, Reintsema, C, Ribeiro Gomes, M, Schmidt, D, Schumann, D, Swetz, D, Ullom, J, Vale, L, De Gerone M., Alpert B., Becker D., Bennett D., Biasotti M., Ceriale V., Dressler R., Faverzani M., Ferri E., Fowler J., Gallucci G., Gard J., Gatti F., Giachero A., Hays-Wehle J., Heinitz S., Hilton G., Koester U., Lusignoli M., Mates J., Nucciotti A., Nisi S., Orlando A., Pessina G., Puiu A., Ragazzi S., Reintsema C., Ribeiro Gomes M., Schmidt D., Schumann D., Swetz D., Ullom J., and Vale L.
- Abstract
The HOLMES project aims to directly measure the nu mass down to the eV scale using the electron capture decay (EC) of Ho-163. It will perform a precise calorimetric measurement of the end-point of the Ho energy spectrum looking for the deformation caused by a finite nu mass. The choice of Ho-163 as source is driven by the very low Q-value of the EC reaction, which allows for high sensitivity with low activities (O(10(2))Bq/detector), thus reducing the pile-up probability. A large array made by thousands of transition edge sensors based micro-calorimeters will be used. The calorimetric approach eliminates systematic uncertainties arising from the use of an external beta source, and minimizes the effect of the atomic de-excitation process. The commissioning of the first implanted sub-array is scheduled for the end of 2018. It will provide useful data about the EC decay of Ho-163 together with a first limit on nu mass.
- Published
- 2019
64. 163 Ho Distillation and Implantation for HOLMES Experiment
- Author
-
Gallucci, G, Biasotti, M, Ceriale, V, De Gerone, M, Faverzani, M, Ferri, E, Gatti, F, Giachero, A, Manfrinetti, P, Nucciotti, A, Orlando, A, Provino, A, Puiu, A, Gallucci, G., Biasotti, M., Ceriale, V., De Gerone, M., Faverzani, M., Ferri, E., Gatti, F., Giachero, A., Manfrinetti, P., Nucciotti, A., Orlando, A., Provino, A., Puiu, A., Gallucci, G, Biasotti, M, Ceriale, V, De Gerone, M, Faverzani, M, Ferri, E, Gatti, F, Giachero, A, Manfrinetti, P, Nucciotti, A, Orlando, A, Provino, A, Puiu, A, Gallucci, G., Biasotti, M., Ceriale, V., De Gerone, M., Faverzani, M., Ferri, E., Gatti, F., Giachero, A., Manfrinetti, P., Nucciotti, A., Orlando, A., Provino, A., and Puiu, A.
- Abstract
HOLMES is an experiment to directly measure the neutrino mass with a calorimetric approach. The calorimetric technique eliminates several systematic uncertainties usually present in spectrometers where the external source and decays to excited states affect the measurement. 163 Ho is chosen as source for its very low Q value (2.8 keV), the proximity of the end-point to resonance M1 and its half life (4570 year). These features are optimal to reach simultaneously a reasonable activity to have sufficient statistics in the end-point and a small quantity of 163 Ho embedded in the detector not to alter significantly its heat capacity. 163 Ho will be produced via neutron irradiation of enriched 162 Er 2 O 3 at the Institute Laue–Langevin (Grenoble, France), and chemically separated at Paul Scherrer Institut (Villigen, Switzerland). It will arrive at INFN laboratory of Genova in oxide form (Ho 2 O 3 ) with traces of others Ho isotopes and contaminants not removable using chemical methods. In particular, the metastable 166 m Ho undergoes beta decay with a half life of about 1200 year, if present 166 m Ho induces background below 5 keV. The removal of these contaminants is critical for HOLMES so a dedicated system is being set up. The system is designed to achieve an optimal mass separation for 163 Ho and consists of two main components: an evaporation chamber and an ion implanter. In the evaporation chamber, holmium will be reduced in metallic form, using the reaction 2Y+Ho 2 O 3 → Y 2 O 3 +2Ho and used to produce a metallic target for the ion implanter source. The ion implanter consists of five main components: a Penning sputter ion source, an acceleration section, a magnetic/electrostatic mass analyser, a magnetic scanning stage and a focusing electrostatic triplet. In this contribution, we describe the procedures, under continuous refinement, for the holmium evaporation process, the ion-implanted metallic target production and the status of the ion implanter.
- Published
- 2019
65. HOLMES, an experiment for a direct measurement of neutrino mass
- Author
-
Puiu, A, Becker, D, Bennett, D, Biasotti, M, Borghesi, M, Ceriale, V, De Gerone, M, Faverzani, M, Ferri, E, Fowler, J, Gallucci, G, Gard, J, Hays-Wehle, J, Hilton, G, Giachero, A, Mates, J, Nucciotti, A, Orlando, A, Pessina, G, Schmidt, D, Swetz, D, Ullom, J, Vale, L, Puiu A., Becker D., Bennett D., Biasotti M., Borghesi M., Ceriale V., De Gerone M., Faverzani M., Ferri E., Fowler J., Gallucci G., Gard J., Hays-Wehle J., Hilton G., Giachero A., Mates J., Nucciotti A., Orlando A., Pessina G., Schmidt D., Swetz D., Ullom J., Vale L., Puiu, A, Becker, D, Bennett, D, Biasotti, M, Borghesi, M, Ceriale, V, De Gerone, M, Faverzani, M, Ferri, E, Fowler, J, Gallucci, G, Gard, J, Hays-Wehle, J, Hilton, G, Giachero, A, Mates, J, Nucciotti, A, Orlando, A, Pessina, G, Schmidt, D, Swetz, D, Ullom, J, Vale, L, Puiu A., Becker D., Bennett D., Biasotti M., Borghesi M., Ceriale V., De Gerone M., Faverzani M., Ferri E., Fowler J., Gallucci G., Gard J., Hays-Wehle J., Hilton G., Giachero A., Mates J., Nucciotti A., Orlando A., Pessina G., Schmidt D., Swetz D., Ullom J., and Vale L.
- Abstract
The neutrino mass is a fundamental parameter of the Standard Model and the measurement of its value is one of the most compelling issues in particle physics. HOLMES is an experiment set up at the University of Milano-Bicocca aiming at performing a direct measurement of the neutrino mass from the Electron Capture (EC) decay of Ho-163. HOLMES will use low-temperature calorimeters, avoiding the typical systematics of spectrometers arising from the use of any external source, in order to precisely measure the energy of the electrons emitted in the EC decay. In this contribution we outline the steps which will lead to the HOLMES measurement of the neutrino mass.
- Published
- 2019
66. A design for an electromagnetic filter for precision energy measurements at the tritium endpoint
- Author
-
Betti, M, Biasotti, M, Boscá, A, Calle, F, Carabe-Lopez, J, Cavoto, G, Chang, C, Chung, W, Cocco, A, Colijn, A, Conrad, J, D’Ambrosio, N, de Salas, P, Faverzani, M, Ferella, A, Ferri, E, Garcia-Abia, P, Gomez-Tejedor, G, Gariazzo, S, Gatti, F, Gentile, C, Giachero, A, Gudmundsson, J, Hochberg, Y, Kahn, Y, Lisanti, M, Mancini-Terracciano, C, Mangano, G, Marcucci, L, Mariani, C, Martínez, J, Messina, M, Molinero-Vela, A, Monticone, E, Nucciotti, A, Pandolfi, F, Pastor, S, Pedrós, J, de los Heros, C, Pisanti, O, Polosa, A, Puiu, A, Raitses, Y, Rajteri, M, Rossi, N, Santorelli, R, Schaeffner, K, Strid, C, Tully, C, Zhao, F, Zurek, K, Betti, M. G., Biasotti, M., Boscá, A., Calle, F., Carabe-Lopez, J., Cavoto, G., Chang, C., Chung, W., Cocco, A. G., Colijn, A. P., Conrad, J., D’Ambrosio, N., de Salas, P. F., Faverzani, M., Ferella, A., Ferri, E., Garcia-Abia, P., Gomez-Tejedor, G. Garcia, Gariazzo, S., Gatti, F., Gentile, C., Giachero, A., Gudmundsson, J. E., Hochberg, Y., Kahn, Y., Lisanti, M., Mancini-Terracciano, C., Mangano, G., Marcucci, L. E., Mariani, C., Martínez, J., Messina, M., Molinero-Vela, A., Monticone, E., Nucciotti, A., Pandolfi, F., Pastor, S., Pedrós, J., de los Heros, C. Pérez, Pisanti, O., Polosa, A. D., Puiu, A., Raitses, Y., Rajteri, M., Rossi, N., Santorelli, R., Schaeffner, K., Strid, C. F., Tully, C. G., Zhao, F., Zurek, K. M., Betti, M, Biasotti, M, Boscá, A, Calle, F, Carabe-Lopez, J, Cavoto, G, Chang, C, Chung, W, Cocco, A, Colijn, A, Conrad, J, D’Ambrosio, N, de Salas, P, Faverzani, M, Ferella, A, Ferri, E, Garcia-Abia, P, Gomez-Tejedor, G, Gariazzo, S, Gatti, F, Gentile, C, Giachero, A, Gudmundsson, J, Hochberg, Y, Kahn, Y, Lisanti, M, Mancini-Terracciano, C, Mangano, G, Marcucci, L, Mariani, C, Martínez, J, Messina, M, Molinero-Vela, A, Monticone, E, Nucciotti, A, Pandolfi, F, Pastor, S, Pedrós, J, de los Heros, C, Pisanti, O, Polosa, A, Puiu, A, Raitses, Y, Rajteri, M, Rossi, N, Santorelli, R, Schaeffner, K, Strid, C, Tully, C, Zhao, F, Zurek, K, Betti, M. G., Biasotti, M., Boscá, A., Calle, F., Carabe-Lopez, J., Cavoto, G., Chang, C., Chung, W., Cocco, A. G., Colijn, A. P., Conrad, J., D’Ambrosio, N., de Salas, P. F., Faverzani, M., Ferella, A., Ferri, E., Garcia-Abia, P., Gomez-Tejedor, G. Garcia, Gariazzo, S., Gatti, F., Gentile, C., Giachero, A., Gudmundsson, J. E., Hochberg, Y., Kahn, Y., Lisanti, M., Mancini-Terracciano, C., Mangano, G., Marcucci, L. E., Mariani, C., Martínez, J., Messina, M., Molinero-Vela, A., Monticone, E., Nucciotti, A., Pandolfi, F., Pastor, S., Pedrós, J., de los Heros, C. Pérez, Pisanti, O., Polosa, A. D., Puiu, A., Raitses, Y., Rajteri, M., Rossi, N., Santorelli, R., Schaeffner, K., Strid, C. F., Tully, C. G., Zhao, F., and Zurek, K. M.
- Abstract
We present a detailed description of the electromagnetic filter for the PTOLEMY project to directly detect the Cosmic Neutrino Background (CNB). Starting with an initial estimate for the orbital magnetic moment, the higher-order drift process of E×B is configured to balance the gradient-B drift motion of the electron in such a way as to guide the trajectory into the standing voltage potential along the mid-plane of the filter. As a function of drift distance along the length of the filter, the filter zooms in with exponentially increasing precision on the transverse velocity component of the electron kinetic energy. This yields a linear dimension for the total filter length that is exceptionally compact compared to previous techniques for electromagnetic filtering. The parallel velocity component of the electron kinetic energy oscillates in an electrostatic harmonic trap as the electron drifts along the length of the filter. An analysis of the phase-space volume conservation validates the expected behavior of the filter from the adiabatic invariance of the orbital magnetic moment and energy conservation following Liouville's theorem for Hamiltonian systems.
- Published
- 2019
67. Neutrino physics with the PTOLEMY project: Active neutrino properties and the light sterile case
- Author
-
Betti, M, Biasotti, M, Bosca, A, Calle, F, Canci, N, Cavoto, G, Chang, C, Cocco, A, Colijn, A, Conrad, J, D'Ambrosio, N, De Groot, N, De Salas, P, Faverzani, M, Ferella, A, Ferri, E, Garcia-Abia, P, Garcia-Cortes, I, Gomez-Tejedor, G, Gariazzo, S, Gatti, F, Gentile, C, Giachero, A, Gudmundsson, J, Hochberg, Y, Kahn, Y, Kievsky, A, Lisanti, M, Mancini-Terracciano, C, Mangano, G, Marcucci, L, Mariani, C, Martinez, J, Messina, M, Molinero-Vela, A, Monticone, E, Morono, A, Nucciotti, A, Pandolfi, F, Parlati, S, Pastor, S, Pedros, J, De Los Heros, C, Pisanti, O, Polosa, A, Puiu, A, Rago, I, Raitses, Y, Rajteri, M, Rossi, N, Rucandio, I, Santorelli, R, Schaeffner, K, Tully, C, Viviani, M, Zhao, F, Zurek, K, Betti M. G., Biasotti M., Bosca A., Calle F., Canci N., Cavoto G., Chang C., Cocco A. G., Colijn A. P., Conrad J., D'Ambrosio N., De Groot N., De Salas P. F., Faverzani M., Ferella A., Ferri E., Garcia-Abia P., Garcia-Cortes I., Gomez-Tejedor G. G., Gariazzo S., Gatti F., Gentile C., Giachero A., Gudmundsson J. E., Hochberg Y., Kahn Y., Kievsky A., Lisanti M., Mancini-Terracciano C., Mangano G., Marcucci L. E., Mariani C., Martinez J., Messina M., Molinero-Vela A., Monticone E., Morono A., Nucciotti A., Pandolfi F., Parlati S., Pastor S., Pedros J., De Los Heros C. P., Pisanti O., Polosa A. D., Puiu A., Rago I., Raitses Y., Rajteri M., Rossi N., Rucandio I., Santorelli R., Schaeffner K., Tully C. G., Viviani M., Zhao F., Zurek K. M., Betti, M, Biasotti, M, Bosca, A, Calle, F, Canci, N, Cavoto, G, Chang, C, Cocco, A, Colijn, A, Conrad, J, D'Ambrosio, N, De Groot, N, De Salas, P, Faverzani, M, Ferella, A, Ferri, E, Garcia-Abia, P, Garcia-Cortes, I, Gomez-Tejedor, G, Gariazzo, S, Gatti, F, Gentile, C, Giachero, A, Gudmundsson, J, Hochberg, Y, Kahn, Y, Kievsky, A, Lisanti, M, Mancini-Terracciano, C, Mangano, G, Marcucci, L, Mariani, C, Martinez, J, Messina, M, Molinero-Vela, A, Monticone, E, Morono, A, Nucciotti, A, Pandolfi, F, Parlati, S, Pastor, S, Pedros, J, De Los Heros, C, Pisanti, O, Polosa, A, Puiu, A, Rago, I, Raitses, Y, Rajteri, M, Rossi, N, Rucandio, I, Santorelli, R, Schaeffner, K, Tully, C, Viviani, M, Zhao, F, Zurek, K, Betti M. G., Biasotti M., Bosca A., Calle F., Canci N., Cavoto G., Chang C., Cocco A. G., Colijn A. P., Conrad J., D'Ambrosio N., De Groot N., De Salas P. F., Faverzani M., Ferella A., Ferri E., Garcia-Abia P., Garcia-Cortes I., Gomez-Tejedor G. G., Gariazzo S., Gatti F., Gentile C., Giachero A., Gudmundsson J. E., Hochberg Y., Kahn Y., Kievsky A., Lisanti M., Mancini-Terracciano C., Mangano G., Marcucci L. E., Mariani C., Martinez J., Messina M., Molinero-Vela A., Monticone E., Morono A., Nucciotti A., Pandolfi F., Parlati S., Pastor S., Pedros J., De Los Heros C. P., Pisanti O., Polosa A. D., Puiu A., Rago I., Raitses Y., Rajteri M., Rossi N., Rucandio I., Santorelli R., Schaeffner K., Tully C. G., Viviani M., Zhao F., and Zurek K. M.
- Abstract
The PTOLEMY project aims to develop a scalable design for a Cosmic Neutrino Background (CNB) detector, the first of its kind and the only one conceived that can look directly at the image of the Universe encoded in neutrino background produced in the first second after the Big Bang. The scope of the work for the next three years is to complete the conceptual design of this detector and to validate with direct measurements that the non-neutrino backgrounds are below the expected cosmological signal. In this paper we discuss in details the theoretical aspects of the experiment and its physics goals. In particular, we mainly address three issues. First we discuss the sensitivity of PTOLEMY to the standard neutrino mass scale. We then study the perspectives of the experiment to detect the CNB via neutrino capture on tritium as a function of the neutrino mass scale and the energy resolution of the apparatus. Finally, we consider an extra sterile neutrino with mass in the eV range, coupled to the active states via oscillations, which has been advocated in view of neutrino oscillation anomalies. This extra state would contribute to the tritium decay spectrum, and its properties, mass and mixing angle, could be studied by analyzing the features in the beta decay electron spectrum.
- Published
- 2019
68. Working principle and demonstrator of microwave-multiplexing for the HOLMES experiment microcalorimeters
- Author
-
Becker, D, Bennett, D, Biasotti, M, Borghesi, M, Ceriale, V, Gerone, M, Faverzani, M, Ferri, E, Fowler, J, Gallucci, G, Gard, J, Giachero, A, Hays-Wehle, J, Hilton, G, Mates, J, Nucciotti, A, Orlando, A, Pessina, G, Puiu, A, Reintsema, C, Schmidt, D, Swetz, D, Ullom, J, Vale, L, Becker, D. T., Bennett, D. A., Biasotti, M., Borghesi, M., Ceriale, V., Gerone, M. De, Faverzani, M., Ferri, E., Fowler, J. W., Gallucci, G., Gard, J. D., Giachero, A., Hays-Wehle, J. P., Hilton, G. C., Mates, J. A. B., Nucciotti, A., Orlando, A., Pessina, G., Puiu, A., Reintsema, C. D., Schmidt, D. R., Swetz, D. S., Ullom, J. N., Vale, L. R., Becker, D, Bennett, D, Biasotti, M, Borghesi, M, Ceriale, V, Gerone, M, Faverzani, M, Ferri, E, Fowler, J, Gallucci, G, Gard, J, Giachero, A, Hays-Wehle, J, Hilton, G, Mates, J, Nucciotti, A, Orlando, A, Pessina, G, Puiu, A, Reintsema, C, Schmidt, D, Swetz, D, Ullom, J, Vale, L, Becker, D. T., Bennett, D. A., Biasotti, M., Borghesi, M., Ceriale, V., Gerone, M. De, Faverzani, M., Ferri, E., Fowler, J. W., Gallucci, G., Gard, J. D., Giachero, A., Hays-Wehle, J. P., Hilton, G. C., Mates, J. A. B., Nucciotti, A., Orlando, A., Pessina, G., Puiu, A., Reintsema, C. D., Schmidt, D. R., Swetz, D. S., Ullom, J. N., and Vale, L. R.
- Abstract
The determination of the neutrino mass is an open issue in modern particle physics and astrophysics. The direct mass measurement is the only theory-unrelated experimental tool capable to probe such quantity. The HOLMES experiment aims to measure the end-point energy of the electron capture (EC) decay of 163Ho with a statistical sensitivity on the neutrino mass as low as ~ 1 eV/c2. In order to acquire the large needed statistics, by keeping the pile-up contribution as low as possible, 1024 transition edge sensors (TESs) with high energy and time resolutions will be employed. Microcalorimeter and bolometer arrays based on transition edge sensor with thousands of pixels are under development for several space-based and ground-based applications, including astrophysics, nuclear and particle physics, and materials science. The common necessary challenge is to develop pratical multiplexing techniques in order to simplify the cryogenics and readout systems. Despite the various multiplexing variants which are being developed have been successful, new approaches are needed to enable scaling to larger pixel counts and faster sensors, as requested for HOLMES, reducing also the cost and complexity of readout. A very novel technique that meets all of these requirements is based on superconducting microwave resonators coupled to radio-frequency Superconducting Quantum Interference Devices, in which the changes in the TES input current is tranduced to a change in phase of a microwave signal. In this work we introduce the basics of this technique, the design and development of the first two-channel read out system and its performances with the first TES detectors specifically designed for HOLMES. In the last part we explain how to extend this approach scaling to 1024 pixels
- Published
- 2019
69. All-Oxide Crystalline Microelectromechanical systems
- Author
-
Biasotti, M., Pellegrino, L., Bellingeri, E., Bernini, C., Siri, A.S., and Marrè, D.
- Published
- 2009
- Full Text
- View/download PDF
70. Properties of single crystal para-terphenyl as medium for high resolution TOF detector
- Author
-
De Gerone, M., Biasotti, M., Ceriale, V., Corsini, D., Gatti, F., Orlando, A., and Pizzigoni, G.
- Published
- 2016
- Full Text
- View/download PDF
71. Status of the HOLMES detector development
- Author
-
Nucciotti, A., Alpert, B., Becker, D., Bennett, D., Biasotti, M., Brofferio, C., Ceriale, V., Ceruti, G., Corsini, D., Day, P., De Gerone, M., Dressler, R., Faverzani, M., Ferri, E., Fowler, J., Fumagalli, E., Gard, J., Gatti, F., Giachero, A., Hays-Wehle, J., Heinitz, S., Hilton, G., Koester, U., Lusignoli, M., Maino, M., Mates, J., Nisi, S., Nizzolo, R., Orlando, A., Parodi, L., Pessina, G., Pizzigoni, G., Puiu, A., Ragazzi, S., Reintsema, C., Ribeiro-Gomes, M., Schmidt, D., Schumann, D., Siccardi, F., Sisti, M., Swetz, D., Terranova, F., Ullom, J., and Vale, L.
- Published
- 2016
- Full Text
- View/download PDF
72. The large scale polarization explorer (LSPE) for CMB measurements: performance forecast
- Author
-
Addamo, G., additional, Ade, P.A.R., additional, Baccigalupi, C., additional, Baldini, A.M., additional, Battaglia, P.M., additional, Battistelli, E.S., additional, Baù, A., additional, de Bernardis, P., additional, Bersanelli, M., additional, Biasotti, M., additional, Boscaleri, A., additional, Caccianiga, B., additional, Caprioli, S., additional, Cavaliere, F., additional, Cei, F., additional, Cleary, K.A., additional, Columbro, F., additional, Coppi, G., additional, Coppolecchia, A., additional, Cuttaia, F., additional, D'Alessandro, G., additional, De Gasperis, G., additional, De Petris, M., additional, Fafone, V., additional, Farsian, F., additional, Ferrari Barusso, L., additional, Fontanelli, F., additional, Franceschet, C., additional, Gaier, T.C., additional, Galli, L., additional, Gatti, F., additional, Genova-Santos, R., additional, Gerbino, M., additional, Gervasi, M., additional, Ghigna, T., additional, Grosso, D., additional, Gruppuso, A., additional, Gualtieri, R., additional, Incardona, F., additional, Jones, M.E., additional, Kangaslahti, P., additional, Krachmalnicoff, N., additional, Lamagna, L., additional, Lattanzi, M., additional, López-Caraballo, C.H., additional, Lumia, M., additional, Mainini, R., additional, Maino, D., additional, Mandelli, S., additional, Maris, M., additional, Masi, S., additional, Matarrese, S., additional, May, A., additional, Mele, L., additional, Mena, P., additional, Mennella, A., additional, Molina, R., additional, Molinari, D., additional, Morgante, G., additional, Natale, U., additional, Nati, F., additional, Natoli, P., additional, Pagano, L., additional, Paiella, A., additional, Panico, F., additional, Paonessa, F., additional, Paradiso, S., additional, Passerini, A., additional, Perez-de-Taoro, M., additional, Peverini, O.A., additional, Pezzotta, F., additional, Piacentini, F., additional, Piccirillo, L., additional, Pisano, G., additional, Polenta, G., additional, Poletti, D., additional, Presta, G., additional, Realini, S., additional, Reyes, N., additional, Rocchi, A., additional, Rubino-Martin, J.A., additional, Sandri, M., additional, Sartor, S., additional, Schillaci, A., additional, Signorelli, G., additional, Siri, B., additional, Soria, M., additional, Spinella, F., additional, Tapia, V., additional, Tartari, A., additional, Taylor, A.C., additional, Terenzi, L., additional, Tomasi, M., additional, Tommasi, E., additional, Tucker, C., additional, Vaccaro, D., additional, Vigano, D.M., additional, Villa, F., additional, Virone, G., additional, Vittorio, N., additional, Volpe, A., additional, Watkins, R.E.J., additional, Zacchei, A., additional, and Zannoni, M., additional
- Published
- 2021
- Full Text
- View/download PDF
73. The Cryogenic Anticoincidence Detector for ATHENA-XMS
- Author
-
Macculi, C., Colasanti, L., Lotti, S., Natalucci, L., Piro, L., Bagliani, D., Biasotti, M., Gatti, F., Torrioli, G., Barbera, M., La Rosa, G., Mineo, T., and Perinati, E.
- Published
- 2012
- Full Text
- View/download PDF
74. THz Spectroscopy Using Low Temperature Mesoscopic Devices
- Author
-
Dell’Anna, M., Antonov, V., Bagliani, D., Biasotti, M., Coutaz, J. L., Gatti, F., Kiviranta, M., Kubatkin, S., Otto, E., Sypek, M., and Spasov, S.
- Published
- 2012
- Full Text
- View/download PDF
75. 163 Ho Distillation and Implantation for HOLMES Experiment
- Author
-
Gallucci, G., Biasotti, M., Ceriale, V., De Gerone, M., Faverzani, M., Ferri, E., Gatti, F., Giachero, A., Manfrinetti, P., Nucciotti, A., Orlando, A., Provino, A., Puiu, A., Gallucci, G, Biasotti, M, Ceriale, V, De Gerone, M, Faverzani, M, Ferri, E, Gatti, F, Giachero, A, Manfrinetti, P, Nucciotti, A, Orlando, A, Provino, A, and Puiu, A
- Subjects
Holmium ,Ion implantation ,Neutrino ma ,HOLMES ,Mass separator - Abstract
HOLMES is an experiment to directly measure the neutrino mass with a calorimetric approach. The calorimetric technique eliminates several systematic uncertainties usually present in spectrometers where the external source and decays to excited states affect the measurement. 163 Ho is chosen as source for its very low Q value (2.8 keV), the proximity of the end-point to resonance M1 and its half life (4570 year). These features are optimal to reach simultaneously a reasonable activity to have sufficient statistics in the end-point and a small quantity of 163 Ho embedded in the detector not to alter significantly its heat capacity. 163 Ho will be produced via neutron irradiation of enriched 162 Er 2 O 3 at the Institute Laue–Langevin (Grenoble, France), and chemically separated at Paul Scherrer Institut (Villigen, Switzerland). It will arrive at INFN laboratory of Genova in oxide form (Ho 2 O 3 ) with traces of others Ho isotopes and contaminants not removable using chemical methods. In particular, the metastable 166 m Ho undergoes beta decay with a half life of about 1200 year, if present 166 m Ho induces background below 5 keV. The removal of these contaminants is critical for HOLMES so a dedicated system is being set up. The system is designed to achieve an optimal mass separation for 163 Ho and consists of two main components: an evaporation chamber and an ion implanter. In the evaporation chamber, holmium will be reduced in metallic form, using the reaction 2Y+Ho 2 O 3 → Y 2 O 3 +2Ho and used to produce a metallic target for the ion implanter source. The ion implanter consists of five main components: a Penning sputter ion source, an acceleration section, a magnetic/electrostatic mass analyser, a magnetic scanning stage and a focusing electrostatic triplet. In this contribution, we describe the procedures, under continuous refinement, for the holmium evaporation process, the ion-implanted metallic target production and the status of the ion implanter.
- Published
- 2019
76. Production and separation of163Ho for nuclear physics experiments
- Author
-
Heinitz, S, Kivel, N, Schumann, D, Köster, U, Balata, M, Biasotti, M, Ceriale, V, De Gerone, M, Faverzani, M, Ferri, E, Gallucci, G, Gatti, F, Giachero, A, Nisi, S, Nucciotti, A, Orlando, A, Pessina, G, Puiu, A, Ragazzi, S, Heinitz, S., Kivel, N., Schumann, D., Köster, U., Balata, M., Biasotti, M., Ceriale, V., De Gerone, M., Faverzani, M., Ferri, E., Gallucci, G., Gatti, F., Giachero, A., Nisi, S., Nucciotti, A., Orlando, A., Pessina, G., Puiu, A., Ragazzi, S., Heinitz, S, Kivel, N, Schumann, D, Köster, U, Balata, M, Biasotti, M, Ceriale, V, De Gerone, M, Faverzani, M, Ferri, E, Gallucci, G, Gatti, F, Giachero, A, Nisi, S, Nucciotti, A, Orlando, A, Pessina, G, Puiu, A, Ragazzi, S, Heinitz, S., Kivel, N., Schumann, D., Köster, U., Balata, M., Biasotti, M., Ceriale, V., De Gerone, M., Faverzani, M., Ferri, E., Gallucci, G., Gatti, F., Giachero, A., Nisi, S., Nucciotti, A., Orlando, A., Pessina, G., Puiu, A., and Ragazzi, S.
- Abstract
This paper describes the production and chemical separation of the163Ho isotope that will be used in several nuclear physics experiments aiming at measuring the neutrino mass as well as the neutron cross section of the163Ho isotope. For this purpose, several batches of enriched162Er have been irradiated at the Institut Laue-Langevin high flux reactor to finally produce 6 mg or 100 MBq of the desired163Ho isotope. A portion of the Er/Ho mixture is then subjected to a sophisticated chemical separation involving ion exchange chromatography to isolate the Ho product from the Er target material. Before irradiation, a thorough analysis of the impurity content was performed and its implication on the produced nuclide inventory will be discussed.
- Published
- 2018
77. The HOLMES experiment: Status and perspective
- Author
-
Alpert, B, Balata, M, Becker, D, Bennett, D, Biasotti, M, Ceriale, V, de Gerone, M, Dressler, R, Faverzani, M, Ferri, E, Fowler, J, Gallucci, G, Gard, J, Gatti, F, Giachero, A, Hays-Wehle, J, Heinitz, S, Hilton, G, Koster, U, Lusignoli, M, Mates, J, Nisi, S, Nucciotti, A, Orlando, A, Pessina, G, Puiu, A, Ragazzi, S, Reintsema, C, Ribeiro-Gomes, M, Schmidt, D, Schumann, D, Swetz, D, Ullom, J, Vale, L, Alpert B., Balata M., Becker D., Bennett D., Biasotti M., Ceriale V., de Gerone M., Dressler R., Faverzani M., Ferri E., Fowler J., Gallucci G., Gard J., Gatti F., Giachero A., Hays-Wehle J., Heinitz S., Hilton G., Koster U., Lusignoli M., Mates J., Nisi S., Nucciotti A., Orlando A., Pessina G., Puiu A., Ragazzi S., Reintsema C., Ribeiro-Gomes M., Schmidt D., Schumann D., Swetz D., Ullom J., Vale L., Alpert, B, Balata, M, Becker, D, Bennett, D, Biasotti, M, Ceriale, V, de Gerone, M, Dressler, R, Faverzani, M, Ferri, E, Fowler, J, Gallucci, G, Gard, J, Gatti, F, Giachero, A, Hays-Wehle, J, Heinitz, S, Hilton, G, Koster, U, Lusignoli, M, Mates, J, Nisi, S, Nucciotti, A, Orlando, A, Pessina, G, Puiu, A, Ragazzi, S, Reintsema, C, Ribeiro-Gomes, M, Schmidt, D, Schumann, D, Swetz, D, Ullom, J, Vale, L, Alpert B., Balata M., Becker D., Bennett D., Biasotti M., Ceriale V., de Gerone M., Dressler R., Faverzani M., Ferri E., Fowler J., Gallucci G., Gard J., Gatti F., Giachero A., Hays-Wehle J., Heinitz S., Hilton G., Koster U., Lusignoli M., Mates J., Nisi S., Nucciotti A., Orlando A., Pessina G., Puiu A., Ragazzi S., Reintsema C., Ribeiro-Gomes M., Schmidt D., Schumann D., Swetz D., Ullom J., and Vale L.
- Abstract
One of the most crucial challenges in today particle physics and cosmology is the determination of the neutrino absolute mass scale. Currently, the only model independent method to set a limit neutrino mass is the study of the nuclear beta spectrum end-point. Performing a calorimetric measurement of the end point of the Electron Capture decay spectrum of 163Ho, the HOLMES experiment aims at pushing down the sensitivity on the smallest neutrino mass at the order of ∼ eV. In its final configuration HOLMES will deploy an array of 1000 microcalorimeters based on Transition Edge Sensors with gold absorbers in which the 163Ho will be ion implanted with a target activity of 300 Hz/det. In order to achieve a statistical sensitivity on the neutrino mass in the eV range, there are stringent requirements on the detector performances: fast time resolution (∼ 1 µs) to solve pile-up events and an energy resolution of few eV at the Q-value (2.8 keV). Furthermore, the detectors must be multiplexable. The best technique to easily readout such a number of detector with a common readout line is the microwave frequency domain readout. We outline the HOLMES project with its physics reach and technical challenges together with its status and perspectives. In detail, we report the status of HOLMES activities concerning the 163Ho isotope production, the TES and multiplexed array read-out and the isotope embedding process.
- Published
- 2018
78. Updates on the Transition-Edge Sensors and Multiplexed Readout for HOLMES
- Author
-
Puiu, A, Becker, D, Bennett, D, Biasotti, M, Borghesi, M, Ceriale, V, de Gerone, M, Faverzani, M, Ferri, E, Fowler, J, Gallucci, G, Gard, J, Hays-Wehle, J, Hilton, G, Giachero, A, Mates, J, Nucciotti, A, Orlando, A, Pessina, G, Schmidt, D, Swetz, D, Ullom, J, Vale, L, Puiu, A., Becker, D., Bennett, D., Biasotti, M., BORGHESI, MATTEO, Ceriale, V., de Gerone, M., Faverzani, M., Ferri, E., Fowler, J., Gallucci, G., Gard, J., Hays-Wehle, J., Hilton, G., Giachero, A., Mates, J., Nucciotti, A., Orlando, A., Pessina, G., Schmidt, D., Swetz, D., Ullom, J., Vale, L., Puiu, A, Becker, D, Bennett, D, Biasotti, M, Borghesi, M, Ceriale, V, de Gerone, M, Faverzani, M, Ferri, E, Fowler, J, Gallucci, G, Gard, J, Hays-Wehle, J, Hilton, G, Giachero, A, Mates, J, Nucciotti, A, Orlando, A, Pessina, G, Schmidt, D, Swetz, D, Ullom, J, Vale, L, Puiu, A., Becker, D., Bennett, D., Biasotti, M., BORGHESI, MATTEO, Ceriale, V., de Gerone, M., Faverzani, M., Ferri, E., Fowler, J., Gallucci, G., Gard, J., Hays-Wehle, J., Hilton, G., Giachero, A., Mates, J., Nucciotti, A., Orlando, A., Pessina, G., Schmidt, D., Swetz, D., Ullom, J., and Vale, L.
- Abstract
Measuring the neutrino mass is one of the most compelling issues in particle physics. HOLMES is an experiment for a direct measurement of the neutrino mass. HOLMES will perform a precise measurement of the end point of the electron capture decay spectrum of (Formula presented.) in order to extract information on the neutrino mass with a sensitivity as low as 1 eV. HOLMES, in its final configuration, will deploy a 1000-pixel array of low-temperature microcalorimeters: each calorimeter is made of an absorber, where the Ho atoms will be implanted, coupled to a transition-edge sensor (TES) thermometer. The detectors will be operated at the working temperature of (Formula presented.) provided by a dilution refrigerator. In order to read out the 1000-detector array of HOLMES, a multiplexing system is necessary: the choice is to couple the transition-edge sensors to a multiplexed rf-SQUID. In this contribution we outline the progress made towards the final configuration of HOLMES regarding both the performances of the TES detectors and the characteristics of the multiplexing system.
- Published
- 2018
79. Status of the HOLMES Experiment to Directly Measure the Neutrino Mass
- Author
-
Nucciotti, A, Alpert, B, Balata, M, Becker, D, Bennett, D, Bevilacqua, A, Biasotti, M, Ceriale, V, Ceruti, G, Corsini, D, De Gerone, M, Dressler, R, Faverzani, M, Ferri, E, Fowler, J, Gallucci, G, Gard, J, Gatti, F, Giachero, A, Hays-Wehle, J, Heinitz, S, Hilton, G, Köster, U, Lusignoli, M, Mates, J, Nisi, S, Orlando, A, Parodi, L, Pessina, G, Puiu, A, Ragazzi, S, Reintsema, C, Ribeiro-Gomez, M, Schmidt, D, Schuman, D, Siccardi, F, Swetz, D, Ullom, J, Vale, L, Nucciotti, A., Alpert, B., Balata, M., Becker, D., Bennett, D., Bevilacqua, A., Biasotti, M., Ceriale, V., Ceruti, G., Corsini, D., De Gerone, M., Dressler, R., Faverzani, M., Ferri, E., Fowler, J., Gallucci, G., Gard, J., Gatti, F., Giachero, A., Hays-Wehle, J., Heinitz, S., Hilton, G., Köster, U., Lusignoli, M., Mates, J., Nisi, S., Orlando, A., Parodi, L., Pessina, G., Puiu, A., Ragazzi, S., Reintsema, C., Ribeiro-Gomez, M., Schmidt, D., Schuman, D., Siccardi, F., Swetz, D., Ullom, J., Vale, L., Nucciotti, A, Alpert, B, Balata, M, Becker, D, Bennett, D, Bevilacqua, A, Biasotti, M, Ceriale, V, Ceruti, G, Corsini, D, De Gerone, M, Dressler, R, Faverzani, M, Ferri, E, Fowler, J, Gallucci, G, Gard, J, Gatti, F, Giachero, A, Hays-Wehle, J, Heinitz, S, Hilton, G, Köster, U, Lusignoli, M, Mates, J, Nisi, S, Orlando, A, Parodi, L, Pessina, G, Puiu, A, Ragazzi, S, Reintsema, C, Ribeiro-Gomez, M, Schmidt, D, Schuman, D, Siccardi, F, Swetz, D, Ullom, J, Vale, L, Nucciotti, A., Alpert, B., Balata, M., Becker, D., Bennett, D., Bevilacqua, A., Biasotti, M., Ceriale, V., Ceruti, G., Corsini, D., De Gerone, M., Dressler, R., Faverzani, M., Ferri, E., Fowler, J., Gallucci, G., Gard, J., Gatti, F., Giachero, A., Hays-Wehle, J., Heinitz, S., Hilton, G., Köster, U., Lusignoli, M., Mates, J., Nisi, S., Orlando, A., Parodi, L., Pessina, G., Puiu, A., Ragazzi, S., Reintsema, C., Ribeiro-Gomez, M., Schmidt, D., Schuman, D., Siccardi, F., Swetz, D., Ullom, J., and Vale, L.
- Abstract
The assessment of neutrino absolute mass scale is still a crucial challenge in today particle physics and cosmology. Beta or electron capture spectrum end-point study is currently the only experimental method which can provide a model-independent measurement of the absolute scale of neutrino mass. HOLMES is an experiment funded by the European Research Council to directly measure the neutrino mass. HOLMES will perform a calorimetric measurement of the energy released in the electron capture decay of the artificial isotope163Ho. In a calorimetric measurement, the energy released in the decay process is entirely contained into the detector, except for the fraction taken away by the neutrino. This approach eliminates both the issues related to the use of an external source and the systematic uncertainties arising from decays on excited final states. The most suitable detectors for this type of measurement are low-temperature thermal detectors, where all the energy released into an absorber is converted into a temperature increase that can be measured by a sensitive thermometer directly coupled with the absorber. This measurement was originally proposed by De Rujula and Lusignoli (Nucl Phys B 219:277, 1983. https://doi.org/10.1016/0550-3213(83)90642-9), but only in the last decade the technological progress in detectors development has allowed to design a sensitive experiment. HOLMES plans to deploy a large array of low-temperature microcalorimeters with implanted163Ho nuclei. In this contribution we outline the HOLMES project with its physics reach and technical challenges, along with its status and perspectives
- Published
- 2018
80. Characterization of the microwave multiplexing readout and TESs for HOLMES
- Author
-
Ferri, E, Alpert, B, Becker, D, Bennett, D, Biasotti, M, Ceriale, V, De Gerone, M, Faverzani, M, Fowler, J, Gallucci, G, Gard, J, Giachero, A, Hays-Wehle, J, Hilton, G, Mates, J, Nucciotti, A, Orlando, A, Pessina, G, Puiu, A, Reintsema, C, Schmidt, D, Swetz, D, Ullom, J, Vale, L, Ferri, E., Alpert, B. K., Becker, D. T., Bennett, D. A., Biasotti, M., Ceriale, V., De Gerone, M., Faverzani, M., Fowler, J. W., Gallucci, G., Gard, J. D., Giachero, A., Hays-Wehle, J. P., Hilton, G. C., Mates, J. A. B., Nucciotti, A., Orlando, A., Pessina, G., Puiu, A., Reintsema, C. D., Schmidt, D. R., Swetz, D. S., Ullom, J. N., Vale, L. R., Ferri, E, Alpert, B, Becker, D, Bennett, D, Biasotti, M, Ceriale, V, De Gerone, M, Faverzani, M, Fowler, J, Gallucci, G, Gard, J, Giachero, A, Hays-Wehle, J, Hilton, G, Mates, J, Nucciotti, A, Orlando, A, Pessina, G, Puiu, A, Reintsema, C, Schmidt, D, Swetz, D, Ullom, J, Vale, L, Ferri, E., Alpert, B. K., Becker, D. T., Bennett, D. A., Biasotti, M., Ceriale, V., De Gerone, M., Faverzani, M., Fowler, J. W., Gallucci, G., Gard, J. D., Giachero, A., Hays-Wehle, J. P., Hilton, G. C., Mates, J. A. B., Nucciotti, A., Orlando, A., Pessina, G., Puiu, A., Reintsema, C. D., Schmidt, D. R., Swetz, D. S., Ullom, J. N., and Vale, L. R.
- Abstract
A powerful tool to determine the effective electron-neutrino mass is the calorimetric measurement of the energy released in a nuclear beta decay. Performing a precision measurement of the end point of the Electron Capture decay spectrum of 163Ho, HOLMES aims at pushing down the sensitivity on the neutrino mass below 1 eV. In its final configuration HOLMES will deploy an array of 1000 microcalorimeters based on Transition Edge Sensors with gold absorbers in which the 163Ho will be ion implanted. The best technique to easily read out such a number of detector with a common readout line is the microwave frequency domain multiplexing. Therefore, the TESs are coupled to multiplexed rf-SQUIDS operated in flux ramp modulation for linearization purposes. The rf-SQUIDS are then coupled to superconducting quarter wavelength resonators in the GHz range, from which the modulating signal is finally recovering using software defined radio techniques. In the last two years an extensive R&D activity has been carried out in order to maximize the multiplexing factor while preserving the performances of each detector which fulfil the HOLMES requirements (i.e. an energy resolution of few eV and a time-resolution of a few microseconds). We report here the progress made towards the characterization of the multiplexing system together with the results of the characterization of the HOLMES detectors.
- Published
- 2018
81. Search for lepton flavour violating muon decay mediated by a new light particle in the MEG experiment
- Author
-
Baldini, A. M., primary, Berg, F., additional, Biasotti, M., additional, Boca, G., additional, Cattaneo, P. W., additional, Cavoto, G., additional, Cei, F., additional, Chiappini, M., additional, Chiarello, G., additional, Chiri, C., additional, Corvaglia, A., additional, de Bari, A., additional, De Gerone, M., additional, Francesconi, M., additional, Galli, L., additional, Gatti, F., additional, Grancagnolo, F., additional, Grassi, M., additional, Grigoriev, D. N., additional, Hildebrandt, M., additional, Hodge, Z., additional, Ieki, K., additional, Ignatov, F., additional, Iwai, R., additional, Iwamoto, T., additional, Kobayashi, S., additional, Kettle, P.-R., additional, Kyle, W., additional, Khomutov, N., additional, Kolesnikov, A., additional, Kravchuk, N., additional, Kuchinskiy, N., additional, Libeiro, T., additional, Lim, G. M. A., additional, Malyshev, V., additional, Matsuzawa, N., additional, Meucci, M., additional, Mihara, S., additional, Molzon, W., additional, Mori, Toshinori, additional, Mtchedilishvili, A., additional, Nakao, M., additional, Natori, H., additional, Nicolò, D., additional, Nishiguchi, H., additional, Nishimura, M., additional, Ogawa, S., additional, Onda, R., additional, Ootani, W., additional, Oya, A., additional, Palo, D., additional, Panareo, M., additional, Papa, A., additional, Pettinacci, V., additional, Pizzigoni, G., additional, Popov, A., additional, Renga, F., additional, Ritt, S., additional, Rozhdestvensky, A., additional, Rossella, M., additional, Sawada, R., additional, Schwendimann, P., additional, Signorelli, G., additional, Stoykov, A., additional, Tassielli, G. F., additional, Toyoda, K., additional, Uchiyama, Y., additional, Usami, M., additional, Voena, C., additional, Yanai, K., additional, and Yudin, Yu. V., additional
- Published
- 2020
- Full Text
- View/download PDF
82. Progress Report on the Large-Scale Polarization Explorer
- Author
-
Lamagna, L., primary, Addamo, G., additional, Ade, P. A. R., additional, Baccigalupi, C., additional, Baldini, A. M., additional, Battaglia, P. M., additional, Battistelli, E., additional, Baù, A., additional, Bersanelli, M., additional, Biasotti, M., additional, Boragno, C., additional, Boscaleri, A., additional, Caccianiga, B., additional, Caprioli, S., additional, Cavaliere, F., additional, Cei, F., additional, Cleary, K. A., additional, Columbro, F., additional, Coppi, G., additional, Coppolecchia, A., additional, Corsini, D., additional, Cuttaia, F., additional, D’Alessandro, G., additional, de Bernardis, P., additional, De Gasperis, G., additional, De Petris, M., additional, Torto, F. Del, additional, Fafone, V., additional, Farooqui, Z., additional, Farsian, F., additional, Fontanelli, F., additional, Franceschet, C., additional, Gaier, T. C., additional, Gatti, F., additional, Genova-Santos, R., additional, Gervasi, M., additional, Ghigna, T., additional, Grassi, M., additional, Grosso, D., additional, Incardona, F., additional, Jones, M., additional, Kangaslahti, P., additional, Krachmalnicoff, N., additional, Mainini, R., additional, Maino, D., additional, Mandelli, S., additional, Maris, M., additional, Masi, S., additional, Matarrese, S., additional, May, A., additional, Mena, P., additional, Mennella, A., additional, Molina, R., additional, Molinari, D., additional, Morgante, G., additional, Nati, F., additional, Natoli, P., additional, Pagano, L., additional, Paiella, A., additional, Paonessa, F., additional, Passerini, A., additional, Perez-de-Taoro, M., additional, Peverini, O. A., additional, Pezzotta, F., additional, Piacentini, F., additional, Piccirillo, L., additional, Pisano, G., additional, Polastri, L., additional, Polenta, G., additional, Poletti, D., additional, Presta, G., additional, Realini, S., additional, Reyes, N., additional, Rocchi, A., additional, Rubino-Martin, J. A., additional, Sandri, M., additional, Sartor, S., additional, Schillaci, A., additional, Signorelli, G., additional, Soria, M., additional, Spinella, F., additional, Tapia, V., additional, Tartari, A., additional, Taylor, A., additional, Terenzi, L., additional, Tomasi, M., additional, Tommasi, E., additional, Tucker, C., additional, Vaccaro, D., additional, Vigano, D. M., additional, Villa, F., additional, Virone, G., additional, Vittorio, N., additional, Volpe, A., additional, Watkins, B., additional, Zacchei, A., additional, and Zannoni, M., additional
- Published
- 2020
- Full Text
- View/download PDF
83. Probing the absolute neutrino mass scale with the 163Ho: the HOLMES project
- Author
-
Gerone, M De, primary, Alpert, B, additional, Becker, D, additional, Bennett, D, additional, Biasotti, M, additional, Ceriale, V, additional, Dressier, R, additional, Faverzani, M, additional, Ferri, E, additional, Fowler, J, additional, Gallucci, G, additional, Gard, J, additional, Gatti, F, additional, Giachero, A, additional, Hays-Wehle, J, additional, Heinitz, S, additional, Hilton, G, additional, Koester, U, additional, Lusignoli, M, additional, Mates, J, additional, Nisi, S, additional, Orlando, A, additional, Pessina, G, additional, Puiu, A, additional, Ragazzi, S, additional, Reintsema, C, additional, Ribeiro-Gomes, M, additional, Schmidt, D, additional, Schumann, D, additional, Swetz, D, additional, Ullom, J, additional, and Vale, L, additional
- Published
- 2020
- Full Text
- View/download PDF
84. The Demonstration Model of the ATHENA X-IFU Cryogenic AntiCoincidence Detector
- Author
-
D’Andrea, M., primary, Macculi, C., additional, Torrioli, G., additional, Argan, A., additional, Brienza, D., additional, Lotti, S., additional, Minervini, G., additional, Piro, L., additional, Biasotti, M., additional, Ferrari Barusso, L., additional, Gatti, F., additional, Rigano, M., additional, Volpe, A., additional, and Battistelli, E. S., additional
- Published
- 2019
- Full Text
- View/download PDF
85. TES Microcalorimeters for PTOLEMY
- Author
-
Rajteri, M., primary, Biasotti, M., additional, Faverzani, M., additional, Ferri, E., additional, Filippo, R., additional, Gatti, F., additional, Giachero, A., additional, Monticone, E., additional, Nucciotti, A., additional, and Puiu, A., additional
- Published
- 2019
- Full Text
- View/download PDF
86. Transition-Edge Sensors for HOLMES
- Author
-
Puiu, A., primary, Becker, D., additional, Bennett, D., additional, Biasotti, M., additional, Borghesi, M., additional, De Gerone, M., additional, Faverzani, M., additional, Ferri, E., additional, Fowler, J., additional, Gallucci, G., additional, Gard, J., additional, Gatti, F., additional, Hilton, G., additional, Giachero, A., additional, Mates, J., additional, Nucciotti, A., additional, Pessina, G., additional, Schmidt, D., additional, Swetz, D., additional, Ullom, J., additional, and Vale, L., additional
- Published
- 2019
- Full Text
- View/download PDF
87. FPA CryoAC Design Concept
- Author
-
MACCULI, CLAUDIO, Gatti, F., Torrioli, G., D'ANDREA, MATTEO, and Biasotti, M.
- Abstract
This document provides the Conceptual design of the TES-based cryogenic anticoincidence (CryoAC) detector for ATHENA X-IFU inside the FPA section. The baseline design is based on an absorber made of a thin single crystal (0.5 mm thick) of Si, where the energy deposited by particles is sensed by TES sensors. The CryoAC is placed below the TES-arrays, at a distance 1 mm (TBC). The active part covers a full area of 4.91 cm2, larger than the arrays (2.3 cm2). The baseline detector is divided into 4 independent pixels, each one with an area of 1.23 cm2. This configuration offers important advantages. Being the pixel technology similar to the TES array, integration, interface and SQUID readout issues can be substantially accommodated by using the same technology solutions. The compliance of the design with requirements has been verified through an analysis of the system, including background assessment by Geant4 [RD1], [RD2], and tests on detector prototypes [RD3], [RD4], [RD5] and [RD6]. As for the front end electronics, the CryoAC detector will be read out by standard FLL technique based on SQuID, one for each of the 4 pixels in which the detector is divided into. We plan to adopt the same SQuID technology selected for the TES array, but having requirements tailored to the CryoAC needs. In order to keep the system redundant we have adopted as baseline an independent FLL chain for each SQuID (4 independent FLL for 4 pixels). Each “pixel + SQuID” will be served by a so-called quadrant service electronic section inserted in the CryoAC WFEE [RD7]. The baseline foresees that the veto operation will be performed on ground, given the expected modest telemetry rate.
- Published
- 2019
88. Bismuth-Gold absorber for large area TES spiderweb bolometer
- Author
-
Siri, B., Biasotti, M., Ferrari Barusso, L., Gallucci, G., Gatti, F., and Rigano, M.
- Published
- 2019
89. Neutrino physics with the PTOLEMY project : active neutrino properties and the light sterile case
- Author
-
Betti, M. G., Biasotti, M., Bosca, A., Calle, F., Canci, N., Cavoto, G., Chang, C., Cocco, A. G., Colijn, A. P., Conrad, J., D'Ambrosio, N., De Groot, N., de Salas, P. F., Faverzani, M., Ferella, A., Ferri, E., Garcia-Abia, P., Garcia-Cortes, I, Garcia Gomez-Tejedor, G., Gariazzo, S., Gatti, F., Gentile, C., Giachero, A., Gudmundsson, J. E., Hochberg, Y., Kahn, Y., Kievsky, A., Lisanti, M., Mancini-Terracciano, C., Mangano, G., Marcucci, L. E., Mariani, C., Martinez, J., Messina, M., Molinero-Vela, A., Monticone, E., Morono, A., Nucciotti, A., Pandolfi, F., Parlati, S., Pastor, S., Pedros, J., Pérez de los Heros, Carlos, Pisanti, O., Polosa, A. D., Puiu, A., Rago, I, Raitses, Y., Rajteri, M., Rossi, N., Rucandio, I, Santorelli, R., Schaeffner, K., Tully, C. G., Viviani, M., Zhao, F., Zurek, K. M., Betti, M. G., Biasotti, M., Bosca, A., Calle, F., Canci, N., Cavoto, G., Chang, C., Cocco, A. G., Colijn, A. P., Conrad, J., D'Ambrosio, N., De Groot, N., de Salas, P. F., Faverzani, M., Ferella, A., Ferri, E., Garcia-Abia, P., Garcia-Cortes, I, Garcia Gomez-Tejedor, G., Gariazzo, S., Gatti, F., Gentile, C., Giachero, A., Gudmundsson, J. E., Hochberg, Y., Kahn, Y., Kievsky, A., Lisanti, M., Mancini-Terracciano, C., Mangano, G., Marcucci, L. E., Mariani, C., Martinez, J., Messina, M., Molinero-Vela, A., Monticone, E., Morono, A., Nucciotti, A., Pandolfi, F., Parlati, S., Pastor, S., Pedros, J., Pérez de los Heros, Carlos, Pisanti, O., Polosa, A. D., Puiu, A., Rago, I, Raitses, Y., Rajteri, M., Rossi, N., Rucandio, I, Santorelli, R., Schaeffner, K., Tully, C. G., Viviani, M., Zhao, F., and Zurek, K. M.
- Abstract
The PTOLEMY project aims to develop a scalable design for a Cosmic Neutrino Background (CNB) detector, the first of its kind and the only one conceived that can look directly at the image of the Universe encoded in neutrino background produced in the first second after the Big Bang. The scope of the work for the next three years is to complete the conceptual design of this detector and to validate with direct measurements that the non-neutrino backgrounds are below the expected cosmological signal. In this paper we discuss in details the theoretical aspects of the experiment and its physics goals. In particular, we mainly address three issues. First we discuss the sensitivity of PTOLEMY to the standard neutrino mass scale. We then study the perspectives of the experiment to detect the CNB via neutrino capture on tritium as a function of the neutrino mass scale and the energy resolution of the apparatus. Finally, we consider an extra sterile neutrino with mass in the eV range, coupled to the active states via oscillations, which has been advocated in view of neutrino oscillation anomalies. This extra state would contribute to the tritium decay spectrum, and its properties, mass and mixing angle, could be studied by analyzing the features in the beta decay electron spectrum.
- Published
- 2019
- Full Text
- View/download PDF
90. A design for an electromagnetic filter for precision energy measurements at the tritium endpoint
- Author
-
Betti, M. G., Biasotti, M., Bosca, A., Calle, F., Carabe-Lopez, J., Cavoto, G., Chang, C., Chung, W., Cocco, A. G., Colijn, A. P., Conrad, J., D'Ambrosio, N., de Salas, P. F., Faverzani, M., Ferella, A., Ferri, E., Garcia-Abia, P., Garcia Gomez-Tejedor, G., Gariazzo, S., Gatti, F., Gentile, C., Giachero, A., Gudmundsson, J. E., Hochberg, Y., Kahn, Y., Lisanti, M., Mancini-Terracciano, C., Mangano, G., Marcucci, L. E., Mariani, C., Martinez, J., Messina, M., Molinero-Vela, A., Monticone, E., Nucciotti, A., Pandolfi, F., Pastor, S., Pedros, J., Pérez de los Heros, Carlos, Pisanti, O., Polosa, A. D., Puiu, A., Raitses, Y., Rajteri, M., Rossi, N., Santorelli, R., Schaeffner, K., Strid, C. F., Tully, C. G., Zhao, F., Zurek, K. M., Betti, M. G., Biasotti, M., Bosca, A., Calle, F., Carabe-Lopez, J., Cavoto, G., Chang, C., Chung, W., Cocco, A. G., Colijn, A. P., Conrad, J., D'Ambrosio, N., de Salas, P. F., Faverzani, M., Ferella, A., Ferri, E., Garcia-Abia, P., Garcia Gomez-Tejedor, G., Gariazzo, S., Gatti, F., Gentile, C., Giachero, A., Gudmundsson, J. E., Hochberg, Y., Kahn, Y., Lisanti, M., Mancini-Terracciano, C., Mangano, G., Marcucci, L. E., Mariani, C., Martinez, J., Messina, M., Molinero-Vela, A., Monticone, E., Nucciotti, A., Pandolfi, F., Pastor, S., Pedros, J., Pérez de los Heros, Carlos, Pisanti, O., Polosa, A. D., Puiu, A., Raitses, Y., Rajteri, M., Rossi, N., Santorelli, R., Schaeffner, K., Strid, C. F., Tully, C. G., Zhao, F., and Zurek, K. M.
- Abstract
We present a detailed description of the electromagnetic filter for the PTOLEMY project to directly detect the Cosmic Neutrino Background (CNB). Starting with an initial estimate for the orbital magnetic moment, the higher-order drift process of E x B is configured to balance the gradient-B drift motion of the electron in such a way as to guide the trajectory into the standing voltage potential along the mid-plane of the filter. As a function of drift distance along the length of the filter, the filter zooms in with exponentially increasing precision on the transverse velocity component of the electron kinetic energy. This yields a linear dimension for the total filter length that is exceptionally compact compared to previous techniques for electromagnetic filtering. The parallel velocity component of the electron kinetic energy oscillates in an electrostatic harmonic trap as the electron drifts along the length of the filter. An analysis of the phase-space volume conservation validates the expected behavior of the filter from the adiabatic invariance of the orbital magnetic moment and energy conservation following Liouville's theorem for Hamiltonian systems. (C) 2019 Elsevier B.V. All rights reserved.
- Published
- 2019
- Full Text
- View/download PDF
91. Neutrino physics with the PTOLEMY project: active neutrino properties and the light sterile case
- Author
-
Betti, M.G., Biasotti, M., Bosca, A., Calle, F., Canci, N., Cavoto, G., Groot, N. de, Mariani, C., Zhao, F., Zurek, K.M., Betti, M.G., Biasotti, M., Bosca, A., Calle, F., Canci, N., Cavoto, G., Groot, N. de, Mariani, C., Zhao, F., and Zurek, K.M.
- Abstract
Contains fulltext : 205969.pdf (preprint version ) (Open Access)
- Published
- 2019
92. Neutrino physics with the PTOLEMY project: Active neutrino properties and the light sterile case
- Author
-
Ministero dell'Istruzione, dell'Università e della Ricerca, Ministerio de Economía y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España), Generalitat Valenciana, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (España), Swedish Research Council, Simons Foundation, John Templeton Foundation, European Commission, Betti, M.G., Biasotti, M., Boscá, A., Calle, F., Canci, N., Cavoto, G., Chang, C., Cocco, A.G., Colijn, A.P., Conrad, J., D'Ambrosio, N., De Groot, N., De Salas, P.F., Faverzani, M., Ferella, A., Ferri, E., Garcia-Abia, P., García-Cortés, I., García, Gustavo, Gariazzo, S., Gatti, Flavio, Gentile, C., Giachero, A., Gudmundsson, Jon E., Hochberg, Y., Kahn, Y., Kievsky, A., Lisanti, M., Mancini-Terracciano, C., Mangano, G., Marcucci, L.E., Mariani, C., Martínez, J., Messina, M., Molinero-Vela, A., Monticone, E., Moroño, A., Nucciotti, A., Pandolfi, F., Parlati, S., Pastor, S., Pedrós, J., De Los Heros, C.P., Pisanti, O., Polosa, A.D., Puiu, A., Rago, I., Raitses, Y., Rajteri, M., Rucandio, I., Santorelli, R., Ministero dell'Istruzione, dell'Università e della Ricerca, Ministerio de Economía y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España), Generalitat Valenciana, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (España), Swedish Research Council, Simons Foundation, John Templeton Foundation, European Commission, Betti, M.G., Biasotti, M., Boscá, A., Calle, F., Canci, N., Cavoto, G., Chang, C., Cocco, A.G., Colijn, A.P., Conrad, J., D'Ambrosio, N., De Groot, N., De Salas, P.F., Faverzani, M., Ferella, A., Ferri, E., Garcia-Abia, P., García-Cortés, I., García, Gustavo, Gariazzo, S., Gatti, Flavio, Gentile, C., Giachero, A., Gudmundsson, Jon E., Hochberg, Y., Kahn, Y., Kievsky, A., Lisanti, M., Mancini-Terracciano, C., Mangano, G., Marcucci, L.E., Mariani, C., Martínez, J., Messina, M., Molinero-Vela, A., Monticone, E., Moroño, A., Nucciotti, A., Pandolfi, F., Parlati, S., Pastor, S., Pedrós, J., De Los Heros, C.P., Pisanti, O., Polosa, A.D., Puiu, A., Rago, I., Raitses, Y., Rajteri, M., Rucandio, I., and Santorelli, R.
- Abstract
The PTOLEMY project aims to develop a scalable design for a Cosmic Neutrino Background (CNB) detector, the first of its kind and the only one conceived that can look directly at the image of the Universe encoded in neutrino background produced in the first second after the Big Bang. The scope of the work for the next three years is to complete the conceptual design of this detector and to validate with direct measurements that the non-neutrino backgrounds are below the expected cosmological signal. In this paper we discuss in details the theoretical aspects of the experiment and its physics goals. In particular, we mainly address three issues. First we discuss the sensitivity of PTOLEMY to the standard neutrino mass scale. We then study the perspectives of the experiment to detect the CNB via neutrino capture on tritium as a function of the neutrino mass scale and the energy resolution of the apparatus. Finally, we consider an extra sterile neutrino with mass in the eV range, coupled to the active states via oscillations, which has been advocated in view of neutrino oscillation anomalies. This extra state would contribute to the tritium decay spectrum, and its properties, mass and mixing angle, could be studied by analyzing the features in the beta decay electron spectrum.
- Published
- 2019
93. A design for an electromagnetic filter for precision energy measurements at the tritium endpoint
- Author
-
Simons Foundation, John Templeton Foundation, Betti, M.G., Biasotti, M., Boscá, A., Calle, F., Carabe-Lopez, J., Cavoto, G., Chang, C., Chung, W., Cocco, A.G., Colijn, A.P., Conrad, J., D'Ambrosio, N., De Salas, P.F., Faverzani, M., Ferella, A., Ferri, E., Garcia-Abia, P., Gomez-Tejedor, G.G., Gariazzo, S., Gatti, Flavio, Gentile, C., Giachero, A., Gudmundsson, Jon E., Hochberg, Y., Kahn, Y., Lisanti, M., Mancini-Terracciano, C., Mangano, G., Marcucci, L.E., Mariani, C., Martínez, J., Messina, M., Molinero-Vela, A., Monticone, E., Nucciotti, A., Pandolfi, F., Pastor, Sergio, Pedrós, J., De Los Heros, C.P., Pisanti, O., Polosa, A.D., Puiu, A., Raitses, Y., Rajteri, M., Rossi, N., Santorelli, R., Schaeffner, K., Strid, C.F., Tully, C.G., Simons Foundation, John Templeton Foundation, Betti, M.G., Biasotti, M., Boscá, A., Calle, F., Carabe-Lopez, J., Cavoto, G., Chang, C., Chung, W., Cocco, A.G., Colijn, A.P., Conrad, J., D'Ambrosio, N., De Salas, P.F., Faverzani, M., Ferella, A., Ferri, E., Garcia-Abia, P., Gomez-Tejedor, G.G., Gariazzo, S., Gatti, Flavio, Gentile, C., Giachero, A., Gudmundsson, Jon E., Hochberg, Y., Kahn, Y., Lisanti, M., Mancini-Terracciano, C., Mangano, G., Marcucci, L.E., Mariani, C., Martínez, J., Messina, M., Molinero-Vela, A., Monticone, E., Nucciotti, A., Pandolfi, F., Pastor, Sergio, Pedrós, J., De Los Heros, C.P., Pisanti, O., Polosa, A.D., Puiu, A., Raitses, Y., Rajteri, M., Rossi, N., Santorelli, R., Schaeffner, K., Strid, C.F., and Tully, C.G.
- Abstract
We present a detailed description of the electromagnetic filter for the PTOLEMY project to directly detect the Cosmic Neutrino Background (CNB). Starting with an initial estimate for the orbital magnetic moment, the higher-order drift process of E×B is configured to balance the gradient-B drift motion of the electron in such a way as to guide the trajectory into the standing voltage potential along the mid-plane of the filter. As a function of drift distance along the length of the filter, the filter zooms in with exponentially increasing precision on the transverse velocity component of the electron kinetic energy. This yields a linear dimension for the total filter length that is exceptionally compact compared to previous techniques for electromagnetic filtering. The parallel velocity component of the electron kinetic energy oscillates in an electrostatic harmonic trap as the electron drifts along the length of the filter. An analysis of the phase-space volume conservation validates the expected behavior of the filter from the adiabatic invariance of the orbital magnetic moment and energy conservation following Liouville's theorem for Hamiltonian systems.
- Published
- 2019
94. The large scale polarization explorer (LSPE) for CMB measurements: performance forecast.
- Author
-
tion, Addamo, G., Ade, P.A.R., Baccigalupi, C., Baldini, A.M., Battaglia, P.M., Battistelli, E.S., Baů, A., de Bernardis, P., Bersanelli, M., Biasotti, M., Boscaleri, A., Caccianiga, B., Caprioli, S., Cavaliere, F., Cei, F., Cleary, K.A., Columbro, F., Coppi, G., and Coppolecchia, A.
- Published
- 2021
- Full Text
- View/download PDF
95. The design of the MEG II experiment
- Author
-
Baldini, A., Baracchini, E., Bemporad, C., Berg, F., Biasotti, M., Boca, G., Cattaneo, P., Cavoto, G., Cei, F., Chiappini, M., Chiarello, G., Chiri, C., Cocciolo, G., Corvaglia, A., Bari, A., Gerone, M., D’Onofrio, A., Francesconi, M., Fujii, Y., Galli, L., Gatti, F., Grancagnolo, F., Grassi, M., Grigoriev, D., Hildebrandt, M., Hodge, Z., Ieki, K., Ignatov, F., Iwai, R., Iwamoto, T., Kaneko, D., Kasami, K., Kettle, P.R., Khazin, B., Khomutov, N., Korenchenko, A., Kravchuk, N., Libeiro, T., Maki, M., Matsuzawa, N., Mihara, S., Milgie, M., Molzon, W., Mori, Toshinori, Morsani, F., Mtchedilishvili, A., Nakao, M., Nakaura, S., Nicolò, D., Nishiguchi, H., Nishimura, M., Ogawa, S., Ootani, W., Panareo, M., Papa, A., Pepino, A., Piredda, G., Popov, A., Raffaelli, F., Renga, F., Ripiccini, E., Ritt, S., Rossella, M., Rutar, G., Sawada, R., Signorelli, G., Simonetta, M., Tassielli, G., Uchiyama, Y., Usami, M., Venturini, M., Voena, C., Yoshida, K., Yudin, Yu., and Zhang, Y.
- Abstract
The MEG experiment, designed to search for the $${\mu ^+ \rightarrow \hbox {e}^+ \gamma }$$ μ+→e+γ decay, completed data-taking in 2013 reaching a sensitivity level of $${5.3\times 10^{-13}}$$ 5.3×10-13 for the branching ratio. In order to increase the sensitivity reach of the experiment by an order of magnitude to the level of $$6\times 10^{-14}$$ 6×10-14 , a total upgrade, involving substantial changes to the experiment, has been undertaken, known as MEG II. We present both the motivation for the upgrade and a detailed overview of the design of the experiment and of the expected detector performance.
- Published
- 2018
96. 163Ho Distillation and Implantation for HOLMES Experiment
- Author
-
Gallucci, G., Biasotti, M., Ceriale, V., De Gerone, M., Faverzani, M., Ferri, E., Gatti, F., Giachero, A., Manfrinetti, P., Nucciotti, A., Orlando, A., Provino, A., and Puiu, A.
- Published
- 2018
97. Working principle and demonstrator of microwave-multiplexing for the HOLMES experiment microcalorimeters
- Author
-
Becker, D.T., primary, Bennett, D.A., additional, Biasotti, M., additional, Borghesi, M., additional, Ceriale, V., additional, Gerone, M. De, additional, Faverzani, M., additional, Ferri, E., additional, Fowler, J.W., additional, Gallucci, G., additional, Gard, J.D., additional, Giachero, A., additional, Hays-Wehle, J.P., additional, Hilton, G.C., additional, Mates, J.A.B., additional, Nucciotti, A., additional, Orlando, A., additional, Pessina, G., additional, Puiu, A., additional, Reintsema, C.D., additional, Schmidt, D.R., additional, Swetz, D.S., additional, Ullom, J.N., additional, and Vale, L.R., additional
- Published
- 2019
- Full Text
- View/download PDF
98. 163Ho distillation and implantation for the HOLMES experiment
- Author
-
De Gerone, M., primary, Biasotti, M., additional, Ceriale, V., additional, Dressler, R., additional, Faverzani, M., additional, Ferri, E., additional, Gallucci, G., additional, Gatti, F., additional, Giachero, A., additional, Heinitz, S., additional, Manfrinetti, P., additional, Nucciotti, A., additional, Orlando, A., additional, Provino, A., additional, Puiu, A., additional, and Schumann, D., additional
- Published
- 2019
- Full Text
- View/download PDF
99. High energy resolution thermal microcalorimeters for the HOLMES experiment
- Author
-
Faverzani, M., primary, Alpert, B., additional, Becker, D., additional, Bennet, D., additional, Biasotti, M., additional, Ceriale, V., additional, De Gerone, M., additional, Ferri, E., additional, Fowler, J., additional, Gallucci, G., additional, Gard, J., additional, Gatti, F., additional, Giachero, A., additional, Hays-Wehle, J., additional, Hilton, G., additional, Mates, J., additional, Nucciotti, A., additional, Orlando, A., additional, Pessina, G., additional, Puiu, A., additional, Ragazzi, S., additional, Reintsema, C., additional, Schmidt, D., additional, Swetz, D., additional, Ullom, J., additional, and Vale, L., additional
- Published
- 2019
- Full Text
- View/download PDF
100. Development and commissioning of the 30 ps time resolution MEG II pixelated Timing Detector
- Author
-
Cattaneo, P.W., primary, Berg, F., additional, Biasotti, M., additional, Boca, G., additional, De Gerone, M., additional, De Bari, A., additional, Francesconi, M., additional, Galli, L., additional, Gatti, F., additional, Hartmann, U., additional, Hodge, Z., additional, Kettle, P.-R., additional, Nakao, M., additional, Nicoló, D., additional, Nishimura, M., additional, Ootani, W., additional, Papa, A., additional, Ritt, S., additional, Rossella, M., additional, Schmid, E., additional, Uchiyama, Y., additional, and Usami, M., additional
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.