51. Development of a new CBR-based platform for human contamination emergency situations
- Author
-
Marc Sauget, Brigitte Chebel-Morello, E. Fontaine, Jad Farah, David Broggio, Julien Henriet, Rémy Laurent, Michel Salomon, D. Franck, Libor Makovicka, Laboratoire d'évaluation de la dose interne ( DRPH/SDI/LEDI ), Institut de Radioprotection et de Sûreté Nucléaire ( IRSN ), Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies ( FEMTO-ST ), Université de Technologie de Belfort-Montbeliard ( UTBM ) -Ecole Nationale Supérieure de Mécanique et des Microtechniques ( ENSMM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Franche-Comté ( UFC ), Laboratoire Chrono-environnement ( LCE ), Université Bourgogne Franche-Comté ( UBFC ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Franche-Comté ( UFC ), Laboratoire d'évaluation de la dose interne (DRPH/SDI/LEDI), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST), Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Chrono-environnement - CNRS - UBFC (UMR 6249) (LCE), Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), and Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)
- Subjects
Male ,Computer science ,Disaster Planning ,Machine learning ,computer.software_genre ,Imaging phantom ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,Radiation Protection ,0302 clinical medicine ,Development (topology) ,Radiation Monitoring ,Similarity (psychology) ,[ PHYS.PHYS.PHYS-MED-PH ] Physics [physics]/Physics [physics]/Medical Physics [physics.med-ph] ,Humans ,Radiology, Nuclear Medicine and imaging ,Radiometry ,Set (psychology) ,ComputingMilieux_MISCELLANEOUS ,Models, Statistical ,Radiation ,Radiological and Ultrasound Technology ,Artificial neural network ,Phantoms, Imaging ,business.industry ,Public Health, Environmental and Occupational Health ,Male individual ,General Medicine ,Models, Theoretical ,Magnetic Resonance Imaging ,Emergency situations ,Human exposure ,030220 oncology & carcinogenesis ,[PHYS.PHYS.PHYS-MED-PH]Physics [physics]/Physics [physics]/Medical Physics [physics.med-ph] ,Neural Networks, Computer ,Artificial intelligence ,Radioactive Hazard Release ,Tomography, X-Ray Computed ,business ,computer ,Algorithms - Abstract
In the case of a radiological emergency situation, involving accidental human exposure, it is necessary to establish as soon as possible a dosimetry evaluation. In most cases, this evaluation is based on numerical representations and models of the victims. Unfortunately, personalised and realistic human representations are often unavailable for the exposed subjects. Hence, existing models like the 'Reference Man' representative of the average male individual are used. However, the accuracy of the treatment depends on the similarity of the phantom to the victim. The EquiVox platform (Research of Equivalent Voxel phantom) developed in this work uses the case-based reasoning principles to retrieve, from a set of existing phantoms, the most adapted one to represent the victim. This paper introduces the EquiVox platform and gives the example of in vivo lung monitoring optimisation to prove its efficiency in choosing the right model. It also presents the artificial neural network tools being developed to adapt the model to the victim.
- Published
- 2011