Olivier Deforges, Ons Jallouli, Mohammed Abutaha, Safwan El Assad, Audrey Queudet, Charlier, Sandrine, Institut d'Électronique et des Technologies du numéRique (IETR), Université de Nantes (UN)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche en Communications et en Cybernétique de Nantes (IRCCyN), Mines Nantes (Mines Nantes)-École Centrale de Nantes (ECN)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN)-PRES Université Nantes Angers Le Mans (UNAM)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), and Nantes Université (NU)-Université de Rennes 1 (UR1)
International audience; Generating random numbers is essential in manycryptographic applications like key generation, cryptographicprotocols for example Transport Layer Security (TLS) protocol,nonce and also in Internet for choosing TCP sequence numbers.We need generators which are able to construct large amountsof secure random numbers. To this end, True Random NumberGenerators (TRNGs) which extract randomness from physicalprocesses are usually used. The sequences generated by TRNGscannot be reproduced. However, generating random numbersby this way is time-consuming and expensive. Another way togenerate random numbers is to use deterministic random numbergenerators in which the seed is reseeded many times during thegeneration of the sequence. In this paper, we propose a newpseudo-chaotic number generator (PCNG) that produces randomnumbers. The algorithm is refreshed many times by using entropysource from Linux kernel. Results of statistical properties (i.e.Nist test, auto and cross-correlation, histogram, chi2-test andsoftware security analysis) exhibit good performance thus demonstratingthat the proposed generator can be used confidently toproduce random numbers.