59 results on '"Discontinuous Galerkin (DG)"'
Search Results
52. Interior Penalty Discontinuous Galerkin Method for the Time-Domain Maxwell's Equations.
- Author
-
Dosopoulos, Stylianos and Jin-Fa Lee
- Subjects
- *
GALERKIN methods , *MAXWELL equations , *TIME-domain analysis , *POLYNOMIALS , *FINITE element method - Abstract
Discontinuous Galerkin (DG) methods support elements of various types, nonmatching grid and varying polynomial order in each element. In DG methods continuity at element interfaces is weakly enforced with the addition of proper penalty terms on the variational formulation commonly referred to as numerical fluxes. An interior penalty approach to derive a DG method for solving the two first order Maxwell's equations in the time domain is presented. The proposed method is explicit and conditionally stable. In addition, a local time-stepping strategy is applied to increase efficiency and reduce the computational time. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
53. A priori error analysis of discontinuous Galerkin isogeometric analysis approximations of Burgers on surface.
- Author
-
Wang, Liang, Yuan, Xinpeng, Xiong, Chunguang, and Wu, Huibin
- Subjects
- *
ISOGEOMETRIC analysis , *TRANSPORT equation , *A priori , *HAMBURGERS , *NONLINEAR equations , *BURGERS' equation - Abstract
In this paper, we extend the discontinuous Galerkin (DG) isogeometric analysis (IgA) methods to solve nonlinear convection (Burgers) problems on implicitly defined surfaces or manifold. We establish an a priori error estimate for space semidiscretization with the sub-optimal convergence order in the L 2. We prove that the resulting methods can be implemented as efficiently as they are for the case of flat space or Euclidean space. The theoretical results are illustrated by two numerical experiments. • This presented IGA-DG method is extended to solve the nonlinear convection equation on surface. • IGA–DG presents an efficient and convenient way to deal with the manifold or surface patches. • IGA–DG can be extended to solve problems on unbound or bound domain. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
54. The Time-Domain Cell Method Is a Coupling of Two Explicit Discontinuous Galerkin Schemes with Continuous Fluxes
- Author
-
Lorenzo Codecasa, Bernard Kapidani, and Ruben Specogna
- Subjects
010302 applied physics ,Coupling ,Function space ,finite difference in time-domain (FDTD) ,Discontinuous Galerkin (DG) ,01 natural sciences ,Finite element method ,Mathematics::Numerical Analysis ,Electronic, Optical and Magnetic Materials ,law.invention ,explicit time-stepping ,time-domain Maxwell ,law ,Discontinuous Galerkin method ,0103 physical sciences ,Applied mathematics ,Polygon mesh ,Time domain ,Electrical and Electronic Engineering ,Galerkin method ,Faraday cage ,unstructured grids ,Mathematics - Abstract
The cell method (CM) or discrete geometric approach (DGA) in the time domain, already introduced by Codecasa et al. in 2008 for the coupled Ampere-Maxwell and Faraday equations, is here recast as a Galerkin Method similar to the finite-element method (FEM). In particular, it is shown to be a mixed method comprising an explicit scheme and two discontinuous Galerkin (DG) FEM spaces formulated on dual meshes, in which each of the two function spaces provides a continuous numerical flux choice for its dual mesh counterpart. The implemented version is shown to compare favorably in terms of accuracy and efficiency with respect to the classic conforming FEM scheme using Whitney elements. When tested on the same tetrahedral mesh, the Courant-Friedrichs-Lewy (CFL) condition for the proposed approach is a factor of 2 less restrictive on the time step with respect to the curl-conforming FEM scheme.
- Published
- 2020
55. Implicit discontinuous Galerkin method on agglomerated high-order grids for 3D simulations
- Author
-
Zhengwu Chen, Yizhao Wu, Hongqiang Lyu, Wanglong Qin, and Shijie Zhou
- Subjects
Discretization ,Agglomeration ,Mechanical Engineering ,Mathematical analysis ,Aerospace Engineering ,Discontinuous Galerkin (DG) ,01 natural sciences ,010305 fluids & plasmas ,010101 applied mathematics ,symbols.namesake ,Quadratic equation ,Discontinuous Galerkin method ,Mesh generation ,0103 physical sciences ,Convergence (routing) ,Euler's formula ,symbols ,Navier-Stokes equations ,0101 mathematics ,Implicit scheme ,Representation (mathematics) ,Navier–Stokes equations ,High-order ,Mathematics - Abstract
High quality of geometry representation is regarded essential for high-order methods to maintain their high-order accuracy. An agglomerated high-order mesh generating method is investigated in combination with discontinuous Galerkin (DG) method for solving the 3D compressible Euler and Navier-Stokes equations. In this method, a fine linear mesh is first generated by standard commercial mesh generation tools. By taking advantage of an agglomeration method, a quadratic high-order mesh is quickly obtained, which is coarse but provides a high-quality geometry representation, thus very suitable for high-order computations. High-order discretizations are performed on the obtained grids with DG method and the discretized system is treated fully implicitly to obtain steady state solutions. Numerical experiments on several flow problems indicate that the agglomerated high-order mesh works well with DG method in dealing with flow problems of curved geometries. It is also found that with a fully implicit discretized system and a p-sequencing method, the DG method can achieve convergence state within several time steps which shows significant efficiency improvements compared to its explicit counterparts.
- Published
- 2016
- Full Text
- View/download PDF
56. A multi-dimensional high-order DG-ALE method based on gas-kinetic theory with application to oscillating bodies
- Author
-
Ren, Xiaodong MATH, Xu, Kun, Shyy, Wei, Ren, Xiaodong MATH, Xu, Kun, and Shyy, Wei
- Abstract
This paper presents a multi-dimensional high-order discontinuous Galerkin (DG) method in an arbitrary Lagrangian-Eulerian (ALE) formulation to simulate flows over variable domains with moving and deforming meshes. It is an extension of the gas-kinetic DG method proposed by the authors for static domains (X. Ren et al., 2015 [22]). A moving mesh gas kinetic DG method is proposed for both inviscid and viscous flow computations. A flux integration method across a translating and deforming cell interface has been constructed. Differently from the previous ALE-type gas kinetic method with piece wise constant mesh velocity at each cell interface within each time step, the mesh velocity variation inside a cell and the mesh moving and rotating at a cell interface have been accounted for in the finite element framework. As a result, the current scheme is applicable for any kind of mesh movement, such as translation, rotation, and deformation. The accuracy and robustness of the scheme have been improved significantly in the oscillating air foil calculations. All computations are conducted in a physical domain rather than in a reference domain, and the basis functions move with the grid movement. Therefore, the numerical scheme can preserve the uniform flow automatically, and satisfy the geometric conservation law (GCL). The numerical accuracy can be maintained even for a largely moving and deforming mesh. Several test cases are presented to demonstrate the performance of the gas-kinetic DG-ALE method. (C) 2016 Elsevier Inc. All rights reserved.
- Published
- 2016
57. DG-XFEM formulation for the unsteady incompressible Navier-Stokes equations
- Author
-
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III, Sala Lardies, Esther, Villardi de Montlaur, Adeline de, Estruch i Tena, Carles, Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III, Sala Lardies, Esther, Villardi de Montlaur, Adeline de, and Estruch i Tena, Carles
- Abstract
This Thesis proposes a combined formulation of the Discontinuous Galerkin Method (DG) with solenoidal basis functions and the eXtended Finite Element Method (XFEM), in order to solve the incompressible Navier-Stokes equations for unsteady flows around a solid object, providing high orders of accuracy in space and time. This DG-XFEM formulation simplifies the meshing process using structured meshes that also do not need to be updated at every time step if the object moves, reducing the computational cost. In the DG-XFEM formulation a fixed structured mesh is used and its elements are classified in three groups, which receive a different treatment. First, the elements inside the solid object are excluded in the calculations since it is treated as a void. Second, the elements belonging to the fluid are calculated as in the DG solenoidal formulation. Third, for the elements cut by the interface integration is modified using XFEM in order to take into account only the fluid region, considering curved integration cells to accurately compute integrals in high-order elements; straight afterwards it is solved again with the DG solenoidal formulation. In the DG solenoidal formulation incompressible flows are first solved for velocity and only part of the pressure's degrees of freedom (hybrid pressure), reducing the overall size of the system to be solved, while the rest of pressure degrees of freedom (interior pressure) is computed as a postprocessing. A numerical validation of the method is given with the simulation of the classical benchmark test of the flow past a cylinder, showing its good performance in several cases tested., En aquesta Tesina es proposa una formulació combinada de dos mètodes numèrics: ”Discontinuous Galerkin Method” (DG) amb funcions de base solenoïdals i ”eXtended Finite Element Method”(XFEM), per tal de resoldre les equacions de Navier-Stokes per a fluxos no estacionaris al voltant d’un objecte sòlid, proporcionant alts ordres de precisió en l’espai i el temps. Aquesta formulació combinada DG-XFEM simplifica el procés de mallat, utilitzant malles estructurades que a més no necessiten ser actualitzades en cada pas de temps si l’objecte es mou, reduint per tant el cost computacional. En la formulació DG-XFEM s’empra una malla estructurada fixa i els seus elements es classifiquen en tres grups, els quals reben tractaments diferents. Primerament, els elements dins del sòlid són exclosos en els càlculs ja que es tracten com a buits. A continuació, els elements que pertanyen al fluid es calculen igual que en la formulació de DG solenoïdal. Per últim, en els elements tallats per la interfase es modifica la integració fent servir XFEM per tal de tenir en compte només la regió de fluid, considerant cèl·lules d’integració corbes per calcular de forma acurada les integrals en elements d’alt ordre; tot seguit es resol de nou emprant la formulació de DG solenoïdal. En la formulació de DG solenoïdal els fluxos incompressibles es resolen en primer lloc per a les velocitats i només una part dels graus de llibertat de la pressió (pressió híbrida), reduint la grandària global del sistema d’equacions a resoldre, mentre que la resta de graus de llibertat (pressió interior) es calculen com un post-procés. El mètode està validat amb la simulació del clàssic problema de test d’un flux de fluid al voltant d’un cilindre, mostrant el seu bon comportament en vàries simulacions.
- Published
- 2012
58. Evolution equations in physical chemistry
- Author
-
Michoski, Craig E.
- Subjects
- Evolution Equations, Physical Chemistry, Chemical Physics, Thermodynamics, Chemical Kinetics, Compressible Flow, Quantum Hydrodynamics (QHD), Chemical Reactors, Multicomponent Flows, Multiphase, Partial Differential Equation, Mathematical Analysis, Finite Element Method (FEM), Discontinuous Galerkin (DG), Boundary Conditions.
- Abstract
We analyze a number of systems of evolution equations that arise in the study of physical chemistry. First we discuss the well-posedness of a system of mixing compressible barotropic multicomponent flows. We discuss the regularity of these variational solutions, their existence and uniqueness, and we analyze the emergence of a novel type of entropy that is derived for the system of equations. Next we present a numerical scheme, in the form of a discontinuous Galerkin (DG) finite element method, to model this compressible barotropic multifluid. We find that the DG method provides stable and accurate solutions to our system, and that further, these solutions are energy consistent; which is to say that they satisfy the classical entropy of the system in addition to an additional integral inequality. We discuss the initial-boundary problem and the existence of weak entropy at the boundaries. Next we extend these results to include more complicated transport properties (i.e. mass diffusion), where exotic acoustic and chemical inlets are explicitly shown. We continue by developing a mixed method discontinuous Galerkin finite element method to model quantum hydrodynamic fluids, which emerge in the study of chemical and molecular dynamics. These solutions are solved in the conservation form, or Eulerian frame, and show a notable scale invariance which makes them particularly attractive for high dimensional calculations. Finally we implement a wide class of chemical reactors using an adapted discontinuous Galerkin finite element scheme, where reaction terms are analytically integrated locally in time. We show that these solutions, both in stationary and in flow reactors, show remarkable stability, accuracy and consistency.
- Published
- 2009
59. DG-XFEM formulation for the unsteady incompressible Navier-Stokes equations
- Author
-
Estruch i Tena, Carles, Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III, Sala Lardies, Esther, and Villardi de Montlaur, Adeline de
- Subjects
Enginyeria civil [Àrees temàtiques de la UPC] ,computational fluid mechanics ,solenoidal basis functions ,high-order ,incompressible ,funcions de base soleno ,Navier-Stokes ,eXtended Finite Element Method (XFEM) ,Discontinuous Galerkin (DG) ,alt ordre ,mecànica de fluids computacional - Abstract
This Thesis proposes a combined formulation of the Discontinuous Galerkin Method (DG) with solenoidal basis functions and the eXtended Finite Element Method (XFEM), in order to solve the incompressible Navier-Stokes equations for unsteady flows around a solid object, providing high orders of accuracy in space and time. This DG-XFEM formulation simplifies the meshing process using structured meshes that also do not need to be updated at every time step if the object moves, reducing the computational cost. In the DG-XFEM formulation a fixed structured mesh is used and its elements are classified in three groups, which receive a different treatment. First, the elements inside the solid object are excluded in the calculations since it is treated as a void. Second, the elements belonging to the fluid are calculated as in the DG solenoidal formulation. Third, for the elements cut by the interface integration is modified using XFEM in order to take into account only the fluid region, considering curved integration cells to accurately compute integrals in high-order elements; straight afterwards it is solved again with the DG solenoidal formulation. In the DG solenoidal formulation incompressible flows are first solved for velocity and only part of the pressure's degrees of freedom (hybrid pressure), reducing the overall size of the system to be solved, while the rest of pressure degrees of freedom (interior pressure) is computed as a postprocessing. A numerical validation of the method is given with the simulation of the classical benchmark test of the flow past a cylinder, showing its good performance in several cases tested. En aquesta Tesina es proposa una formulació combinada de dos mètodes numèrics: ”Discontinuous Galerkin Method” (DG) amb funcions de base solenoïdals i ”eXtended Finite Element Method”(XFEM), per tal de resoldre les equacions de Navier-Stokes per a fluxos no estacionaris al voltant d’un objecte sòlid, proporcionant alts ordres de precisió en l’espai i el temps. Aquesta formulació combinada DG-XFEM simplifica el procés de mallat, utilitzant malles estructurades que a més no necessiten ser actualitzades en cada pas de temps si l’objecte es mou, reduint per tant el cost computacional. En la formulació DG-XFEM s’empra una malla estructurada fixa i els seus elements es classifiquen en tres grups, els quals reben tractaments diferents. Primerament, els elements dins del sòlid són exclosos en els càlculs ja que es tracten com a buits. A continuació, els elements que pertanyen al fluid es calculen igual que en la formulació de DG solenoïdal. Per últim, en els elements tallats per la interfase es modifica la integració fent servir XFEM per tal de tenir en compte només la regió de fluid, considerant cèl·lules d’integració corbes per calcular de forma acurada les integrals en elements d’alt ordre; tot seguit es resol de nou emprant la formulació de DG solenoïdal. En la formulació de DG solenoïdal els fluxos incompressibles es resolen en primer lloc per a les velocitats i només una part dels graus de llibertat de la pressió (pressió híbrida), reduint la grandària global del sistema d’equacions a resoldre, mentre que la resta de graus de llibertat (pressió interior) es calculen com un post-procés. El mètode està validat amb la simulació del clàssic problema de test d’un flux de fluid al voltant d’un cilindre, mostrant el seu bon comportament en vàries simulacions.
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.