51. Mucopolysaccharidosis type VI phenotypes-genotypes and antibody response to galsulfase
- Author
-
Arnold J. J. Reuser, Marian A. Kroos, Lale Özkan, George J. G. Ruijter, Marion M. G. Brands, Daniel Grinberg, Marianne Hoogeveen-Westerveld, Ans T. van der Ploeg, Willemieke Nobel, Iris Plug, Lluïsa Vilageliu, Dicky J. J. Halley, Pediatrics, and Clinical Genetics
- Subjects
Arylsulfatase B ,Male ,Genotype-phenotype correlation ,Adolescent ,Genotype ,Lysosomal storage disorder ,N-Acetylgalactosamine-4-Sulfatase ,Mucopolysaccharidosis ,Mucopolysaccharidosis type VI ,Enzyme-Linked Immunosorbent Assay ,Gene mutation ,Protein processing ,03 medical and health sciences ,0302 clinical medicine ,Galsulfase ,medicine ,Humans ,Immunoprecipitation ,Genetics(clinical) ,Pharmacology (medical) ,Child ,Genetics (clinical) ,030304 developmental biology ,Medicine(all) ,0303 health sciences ,Mucopolysaccharidosis VI ,biology ,Research ,Infant ,General Medicine ,Enzyme replacement therapy ,medicine.disease ,Recombinant Proteins ,3. Good health ,Maroteaux–Lamy syndrome ,Phenotype ,Child, Preschool ,Immunology ,Antibody Formation ,biology.protein ,Mutagenesis, Site-Directed ,Maroteaux-Lamy syndrome ,Female ,Antibody ,030217 neurology & neurosurgery - Abstract
Background Mucopolysaccharidosis type VI (Maroteaux-Lamy syndrome; MPS VI) is an autosomal recessive lysosomal storage disorder in which deficiency of N-acetylgalactosamine 4-sulfatase (arylsulfatase B; ARSB) leads to the storage of glycosaminoglycans (GAGs) in connective tissue. The genotype-phenotype correlation has been addressed in several publications but the picture is not complete. Since 2007, enzyme-replacement therapy (ERT) has been available for patients with MPS VI in the Netherlands. The purpose of our study was to learn more about the genotype-phenotype correlations in MPS VI and the antibody response to ERT with galsulfase (recombinant human arylsulfatase B). Methods We identified ARSB mutations in 12 patients and used site-directed mutagenesis to study their effect. Antibody levels to galsulfase were measured using ELISA and a semi-quantitative immunoprecipitation method. We assessed the in vitro inhibitory effect of antibodies on galsulfase uptake and their effect on clinical outcome. Results Five patients had a rapidly progressive phenotype and seven a slowly progressive phenotype. In total 9 pathogenic mutations were identified including 4 novel mutations (N301K, V332G, A237D, and c.1142 + 2 T > C) together composing 8 pathogenic genotypes. Most mutations appeared not to affect the synthesis of ARSB (66 kD precursor), but to hamper its maturation (43 kD ARSB). Disease severity was correlated with urinary GAG excretion. All patients developed antibodies to galsulfase within 26 weeks of treatment. It was demonstrated that these antibodies can inhibit the uptake of galsulfase in vitro. Conclusions The clinical phenotypes and the observed defects in the biosynthesis of ARSB show that some of the mutations that we identified are clearly more severe than others. Patients receiving galsulfase as enzyme-replacement therapy can develop antibodies towards the therapeutic protein. Though most titers are modest, they can exceed a level at which they potentially affect the clinical outcome of enzyme-replacement therapy.
- Published
- 2013