Charles Crawford, Stuart Gough, Frank Sundermann, Carlo Pogliani, Félix Dufaye, Hiroyuki Miyashita, Astrid Sippel, Christophe Brochard, Edgardo García-Berríos, Mark Wylie, Luca Sartelli, and Carl Hess
193nm binary photomasks are still used in the semiconductor industry for the lithography of some critical layers for the nodes 90nm and 65nm, with high volumes and over long periods. However, these 193nm binary photomasks can be impacted by a phenomenon of chrome oxidation leading to critical dimensions uniformity (CDU) degradation with a pronounced radial signature. If not detected early enough, this CDU degradation may cause defectivity issues and lower yield on wafers. Fortunately, a standard cleaning and repellicle service at the mask shop has been demonstrated as efficient to remove the grown materials and get the photomask CD back on target.Some detection methods have been already described in literature, such as wafer CD intrafield monitoring (ACLV), giving reliable results but also consuming additional SEM time with less precision than direct photomask measurement. In this paper, we propose another approach, by monitoring the CDU directly on the photomask, concurrently with defect inspection for regular requalification to production for wafer fabs. For this study, we focused on a Metal layer in a 90nm technology node. Wafers have been exposed with production conditions and then measured by SEM-CD. Afterwards, this photomask has been measured with a SEM-CD in mask shop and also inspected on a KLA-Tencor X5.2 inspection system, with pixels 125 and 90nm, to evaluate the Intensity based Critical Dimension Uniformity (iCDU) option. iCDU was firstly developed to provide feed-forward CDU maps for scanner intrafield corrections, from arrayed dense structures on memory photomasks. Due to layout complexity and differing feature types, CDU monitoring on logic photomasks used to pose unique challenges.The selection of suitable feature types for CDU monitoring on logic photomasks is no longer an issue, since the transmitted intensity map gives all the needed information, as shown in this paper. In this study, the photomask was heavily degraded after more than 18,000 300mm wafers exposed and the cleaning brought it back almost to its original state after manufacture. Wafer CD, photomask CD and iCDU results can be compared, before and after a standard mask shop cleaning. Measurement points have be chosen in logic areas and SRAM areas, so that their respective behaviours can be studied separately. Transmitted maps before and after cleaning were analysed in terms of CD shift and CDU degradation. The delta map shows a nice correlation with photomask CD shift. iCDU demonstrated the capability to detect a reliable CD range degradation of 5nm on photomask by a comparison between a reference inspection and the current inspection. Die to die inspection mode provides also valuable data, highlighting the degraded chrome sidewalls, more in the photomask centre than on the edges. Ultimately, these results would enable to trigger the preventive cleanings rather than on predefined thresholds. The expected gains for wafer fabs are cost savings (adapted cleanings frequency), increased photomask availability for production, longer photomask lifetime, no additional SEM time neither for photomask nor on wafer.