Objective: To investigate the effects of deferoxamine on macrophage polarization and wound healing in mice with deep tissue injury (DTI) and its mechanism. Methods: The experimental research methods were adopted. Fifty-four male C57BL/6J mice of 6-8 weeks old were divided into DTI control group, 2 mg/mL deferoxamine group, and 20 mg/mL deferoxamine group according to random number table, with 18 mice in each group. DTI was established on the back of mice by magnet compression method. From post injury day (PID) 1, mice were injected subcutaneously with 100 µL normal saline or the corresponding mass concentration of deferoxamine solution every other day at the wound edge until the samples were collected. Another 6 mice without any treatment were selected as normal control group. Six mice in each of the three DTI groups were collected on PID 3, 7, and 14 to observe the wound changes and calculate the wound healing rate. Normal skin tissue of mice in normal control group was collected on PID 3 in other groups (the same below) and wound tissue of mice in the other three groups on PID 7 and 14 was collected for hematoxylin-eosin (HE) staining to observe the tissue morphology. Normal skin tissue of mice in normal control group and wound tissue of mice in the other three groups on PID 7 were collected, and the percentages of CD206 and CD11c positive area were observed and measured by immunohistochemical staining, and the mRNA and protein expressions of CD206, CD11c, and inducible nitric oxide synthase (iNOS) were detected by real-time fluorescence quantitative reverse transcription polymerase chain reaction and Western blotting, respectively. Normal skin tissue of mice in normal control group and wound tissue of mice in DTI control group and 20 mg/mL deferoxamine group were collected on PID 3, 7, and 14, and the protein expressions of signal transducer and activator of transcription 3 (STAT3) and interleukin-10 (IL-10) were detected by Western blotting. The sample number in each group at each time point in the above experiments. The RAW264.7 cells were divided into 50 μmol/L deferoxamine group, 100 μmol/L deferoxamine group, 200 μmol/L deferoxamine group, and blank control group, which were treated correspondingly, with 3 wells in each group. The positive cell percentages of CD206 and CD86 after 48 h of culture were detected by flow cytometry. Data were statistically analyzed with analysis of variance for repeated measurement, one-way analysis of variance, and least significant difference test. Results: On PID 7, the wound healing rates of mice in 2 mg/mL and 20 mg/mL deferoamine groups were (17.7±3.7)% and (21.5±5.0)%, respectively, which were significantly higher than (5.1±2.3)% in DTI control group ( P <0.01). On PID 14, the wound healing rates of mice in 2 mg/mL and 20 mg/mL deferoamine groups were (51.1±3.8)% and (57.4±4.4)%, respectively, which were significantly higher than (25.2±3.8)% in DTI control group ( P <0.01). HE staining showed that the normal skin tissue layer of mice in normal control group was clear, the epidermis thickness was uniform, and skin appendages such as hair follicles and sweat glands were visible in the dermis. On PID 7, inflammation in wound tissue was obvious, the epidermis was incomplete, and blood vessels and skin appendages were rare in mice in DTI control group; inflammatory cells in wound tissue were reduced in mice in 2 mg/mL and 20 mg/mL deferoxamine groups, and a few of blood vessels and skin appendages could be seen. On PID 14, inflammation was significantly alleviated and blood vessels and skin appendages were increased in wound tissue of mice in 2 mg/mL and 20 mg/mL deferoxamine groups compared with those in DTI control group. On PID 7, the percentages of CD206 positive area in wound tissue of mice in 2 mg/mL and 20 mg/mL deferoxamine groups were significantly higher than that in DTI control group ( P <0.01), the percentage of CD206 positive area in wound tissue of mice in DTI control group was significantly lower than that in normal skin tissue of mice in normal control group ( P <0.01), the percentage of CD206 positive area in wound tissue of mice in 20 mg/mL deferoxamine group was significantly higher than that in normal skin tissue of mice in normal control group ( P <0.01). The percentages of CD11c positive area in wound tissue of mice in 2 mg/mL and 20 mg/mL deferoxamine groups were significantly lower than those in DTI control group and normal skin tissue in normal control group ( P <0.05 or P <0.01), and the percentage of CD11c positive area in normal skin tissue of mice in normal control group was significantly higher than that in DTI control group ( P <0.05). On PID 7, the CD206 mRNA expressions in the wound tissue of mice in 2 mg/mL and 20 mg/mL deferoxamine groups were significantly higher than that in DTI control group ( P <0.01), but significantly lower than that in normal skin tissue in normal control group ( P <0.01); the CD206 mRNA expression in wound tissue of mice in DTI control group was significantly lower than that in normal skin tissue in normal control group ( P <0.01). The mRNA expressions of CD11c and iNOS in wound tissue of mice in 2 mg/mL and 20 mg/mL deferoamine groups were significantly lower than those in DTI control group ( P <0.01). The mRNA expressions of CD11c in the wound tissue of mice in DTI control group, 2 mg/mL and 20 mg/mL deferoamine groups were significantly higher than that in normal skin tissue in normal control group ( P <0.01). Compared with that in normal skin tissue in normal control group, the mRNA expressions of iNOS in wound tissue of mice in 2 mg/mL and 20 mg/mL deferoamine groups were significantly decreased ( P <0.01), and the mRNA expression of iNOS in wound tissue of mice in DTI control group was significantly increased ( P <0.01). On PID 7, the protein expressions of CD206 in the wound tissue of mice in 2 mg/mL and 20 mg/mL deferoamine groups were significantly higher than those in DTI control group and normal skin tissue in normal control group ( P <0.01), and the protein expression of CD206 in wound tissue of mice in DTI control group was significantly lower than that in normal skin tissue in normal control group ( P <0.01). The protein expressions of CD11c and iNOS in wound tissue of mice in 2 mg/mL and 20 mg/mL deferoamine groups were significantly lower than those in DTI control group ( P <0.01). The protein expressions of CD11c and iNOS in wound tissue of mice in DTI control group were significantly higher than those in normal skin tissue in normal control group ( P <0.01). The CD11c protein expressions in wound tissue of mice in 2 mg/mL and 20 mg/mL deferoamine groups were significantly higher than those in normal skin tissue in normal control group ( P <0.05 or P <0.01). The protein expression of iNOS in wound tissue of mice in 2 mg/mL deferoamine group was significantly lower than that in 20 mg/mL deferoamine group and normal skin tissue in normal control group ( P <0.05). On PID 3, 7, and 14, the protein expressions of STAT3 and IL-10 in wound tissue of mice in 20 mg/mL deferoxamine group were significantly higher than those in DTI control group ( P <0.05 or P <0.01), and the protein expressions of STAT3 were significantly higher than those in normal skin tissue in normal control group ( P <0.05 or P <0.01). On PID 7 and 14, the protein expressions of IL-10 in wound tissue of mice in 20 mg/mL deferoxamine group were significantly higher than those in normal skin tissue in normal control group ( P <0.01). On PID 3, 7, and 14, the protein expressions of IL-10 in wound tissue of mice in DTI control group were significantly lower than those in normal skin tissue in normal control group ( P <0.05 or P <0.01). After 48 h of culture, compared with those in blank control group, the CD206 positive cell percentages in 100 μmol/L and 200 μmol/L deferoamine groups were significantly increased ( P <0.01), while the CD86 positive cell percentages in 100 μmol/L and 200 μmol/L deferoamine groups were significantly decreased ( P <0.01). Conclusions: Deferoxamine can promote the polarization of macrophages toward the anti-inflammatory M2 phenotype and improve wound healing by enhancing the STAT3/IL-10 signaling pathway in DTI mice.