Vandmangel, oversvømmelse og tørke er globale udfordringer. Inden for det sidste årti, findes flere eksempler på alvorlig vandmangel, og den voksende verdensbefolkning samt stigende temperatuer øger presset på vores globale ferskvandsresourcer. Paradoksalt, har vi begrænset kendskab til de spatiotemporale dynamikker, som kontrollerer overfladevandsresourcer i stor skala. Remote sensing har vist sig at være et nyttigt redskab til overvågning af overfladevand samt i hydrologisk og geomorfologisk modellering. Det er hovedmotivationen bag dette studie: overvågning af vandresourcer fra rummet. Altimetrisatellitter gør det muligt at overvåge overfladevandets højde og hældning samt ændringer over tid. Desværre risikerer såkaldte ”short-repeat” altimetri-missioner at misse flere vandområder, da en kortere gentagelsesperiode sker på bekostning af stor afstand imellem satellitens spor. Takket være dens drivende bane, kan CryoSat-2 overvåge et langt større antal vandområder. Desuden opnås en mere detaljeret profil af floder, som ellers har været sparsomt besøgt. Denne fordel medfører dog en meget lang gentagelsesperiode. Dette stiller nye udfordring, i særdeleshed i forhold til at udlede vandhøjdetidsrækker ved bestemte ”virtual stations”, punkter langs floden, som short-repeat missioner besøger gentagne gange. Derfor stilles problematikken: ”Kan vi anvende CryoSat-2s distribuerede data til flodmodeller ud over ”virtual station” konceptet?”I dette PhD projekt anvendes CryoSat-2 til overvågning af overfladevandsresourcer i Kina på national skala og til hydrodynamisk modellering. Formålet er at forstå variationer i ferskvandsresourcer i tid og rum, samt muligheder for hydrodynamicsk modellering uden præcis kundskab til batymetry. Hvordan ændrer søer og reservoirer sig og hvordan kan CryoSat-2 anvendes til at besvare dette spørgsmål? Dette spørgsmål er baggrunden for vores undersøgelse af vandhøjdeændringer i floder og søer. Dette studie viser CryoSat-2s bemærkelsesværdigt høje rumlige dækning. Over 1000 søer og reservoirer samt 6 store floder er undersøgt. RMSE for CryoSat-2 er omkring 20 cm for søerne og omkring 40 cm for de fleste floder, med undtagelse af Yangtze og Pearl floderne. For de fleste søer i det Tibetanske plateau – særligt i den nordlige del – forstætter tendensen for stigende vandstand observeret af ICESat mellem 2003 og 2009. Derudover observeres en overvejende faldende tendens for vandområder i Junggar og Huai oplandene, i modsætning til den markant stigende tendens for Songnen plænen og den nedre Yangtze flod.Med henblik på at forstå dynamikken i overfladevandsmagasiner samt dets bridag til ændringer i den totale vandmængde, estimerer vi både ændringer i overfladevandsmagasinerne og i det totale vandlager ved at kombinere CryoSat-2 med vandareal og GRACE. Den estimerede ændring i overfladevandsmagasinet på det Tibetanske Plateau og indre Mongilia-Xinjiang er henholdsvis 35.5 og 25.9×108 m3/yr. I Nordøst Kina ses derimod faldende vandmængder. Ændringer i volumen indikerer at overfladevandsvariationer bidrager signifikant til ændringer i de totale vandmængder, særligt i Qaidam basinet og det Tibetanske Plateau, som ikke kan udelades fra landoverflademodeller. I sidste del af studiet, er en 1D hydrodynamisk model (MIKE HYDRO River) kalibreret for Songhua floden, hvor ingen batymetrymålinger er tilgængelige. CryoSat-2 data, samt data fra short-repeat altimetere anvendes til kalibrering af flodens distribuerede morfologiske parametre, dvs. ruhed samt flod datum. CryoSat-2 overgår tydeligt de øvrige altimetre, både i syntetiske og virkelige experimenter. Resultaterne viser derudover, at højere nøjagtighed ikke sænker parametre usikkerhed proportionelt for alle tværsnit. I stedet kan den høje rumlige observationsdensitet støtte identificering af de rumlige variationer af de morfologiske parametre, som demonstreret ved brug af CryoSat-2 og Envisat data i modsætning til Jason-2 data. Resultaterne fra dette studie kaster lys på værdien af CryoSat-2 for overflandsovervågning samt -modellering i Kina. CryoSat-2s unikke overvågningsmønster fremhæver de spatiotemporale ændringer i overfladevandsresourcer på kontintentalt plan. Dette er værdigfuldt for en effektiv og billig vandresource overvågningsstrategi, i særdeleshed i områder med få eller ingen in-situ observationer. Derudover er hydrodynamisk modellering et værdigfuldt værktøj, i lys af ofte mangelfulde batymetry observationer for mange floder. Dette studie er aktuelt, da den forestående Surface Water and Ocean Topography (SWOT) mission vil forbedre den spatiotemporale opløsning af rumobservationer af overfladevandshøjder markant. Inden da, skal hydrauliske modeller være klar til at håndtere og udnytte disse nye data. Water shortages, floods, and droughts pose global challenges. The past decade saw severe water scarcity and flooding. The world’s population continues to soar and temperature is ever rising, meaning that the freshwater we have is under severe pressure. However, we have poor knowledge of the spatial and temporal dynamics of freshwater at large scales. Remote sensing has proven useful in water resources monitoring as well as hydrological and geomorphological modeling. This is the main motivation of this research: monitoring water resources from space. Satellite altimetry allows us to measure water surface elevation, its slope, and temporal variation. Most satellite altimetry missions (Jason series, ERS/Envisat/SARAL, etc.) have a short repeat period, i.e. 10 to 35 days while CryoSat-2 has a 369-day long repeat (geodetic orbit). However, short-repeat altimeters miss too many water bodies due to their coarse ground track spacing. Thanks to its geodetic orbit, CryoSat-2 allows a high number of water bodies to be monitored. This also provides a more highly resolved water surface elevation profile of rivers that have not been well sampled before. In the meantime, these benefits come at the cost of long repeat cycle. This particularly poses challenges to derive time series of water level at virtual stations, which are commonly used for short-repeat altimeters. Therefore, one research question is “Can we use distributed CryoSat-2 data for river modeling beyond the ‘virtual station’ concept?” The contributions of this PhD project are to exploit CryoSat-2 for surface water resources monitoring in China at national scale and for hydrodynamic modeling. The aim is to understand spatiotemporal variations of freshwater resources as well as hydrodynamic modeling without precise knowledge of bathymetry. How do lakes and reservoirs change and how can CryoSat-2 help to understand these variations? This motivates the study of water level variation of water bodies. This work demonstrates the great spatial coverage of CryoSat-2. Over 1000 lakes and reservoirs, and 6 large rivers were investigated. RMSE of CryoSat-2 over lakes is around 20 cm, and around 40 cm for most rivers, except the Yangtze and Pearl rivers. Most lakes in the Tibetan Plateau, especially those in the northern part, maintained the rising trend seen by ICESat during 2003 - 2009. Moreover, water bodies in the Junggar Basin and Huai River Basin showed a dominant declining trend. In contrast, those in the Songnen Plain, lower Yangtze River basin showed a marked rising trend. To understand surface water storage dynamics and its contribution to total water storage change, we estimated both surface and total water storage change by combining CryoSat-2 with water extent maps and GRACE total storage change estimates. The estimated surface water storage changes in the Tibetan Plateau, and Inner Mongolia-Xinjiang are 35.5 and 25.9×108 m3/yr, respectively. On the contrary, the northeast China zone exhibited a decline. Changes in volume indicate that surface water variation contributes significantly to total storage variation, especially in the Qaidam Basin and the Tibetan Plateau, and should therefore not be omitted in land surface models. Finally, calibration of a 1D hydrodynamic model (MIKE HYDRO River) was carried out in the Songhua River, where no bathymetry information is available. CryoSat-2 data and data from other short-repeat satellite altimeters were used to calibrate distributed river morphological parameters, i.e. roughness and river datum jointly. Clearly, CryoSat-2 by far outperforms other altimeters in both synthetic and real-world experiments. The results also show that a higher accuracy of observations does not proportionally decrease parameter uncertainty for all cross sections. Instead, high spatial sampling density (such as CryoSat-2 and Envisat) helps to identify the spatial variability of morphological parameters.The results from this project shed light on the added value of CryoSat-2 for surface water monitoring and river modeling over China. This dataset shows the spatiotemporal variation of surface water resources at continental scale with the unique sampling pattern of CryoSat-2. This is valuable for water resource monitoring in an efficient and cost-effective way, especially for sparsely gauged or ungauged regions. Moreover, the dataset is valuable for hydrodynamic modeling considering the lack of bathymetry information for many rivers. In addition, this work is timely because the upcoming Surface Water and Ocean Topography mission will significantly improve spatial and temporal resolution of spaceborne observations of water surface elevation, and hydraulic models need to be prepared for the uptake of these data.