51. Numerical study of oil-water emulsion formation in stirred vessels: effect of impeller speed
- Author
-
Liang, Fuyue, Kahouadji, Lyes, Valdes, Juan Pablo, Shin, Seungwon, Chergui, Jalel, Juric, Damir, Matar, Omar, Imperial College London, Hongik University, Laboratoire Interdisciplinaire des Sciences du Numérique (LISN), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), COuplages Multiphysiques Et Transferts (COMET), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Mécanique-Energétique (M.-E.), and Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SPI]Engineering Sciences [physics] ,LES ,Oil-water Emulsion ,[NLIN]Nonlinear Sciences [physics] ,Multiphase mixing - Abstract
International audience; The mixing of immiscible oil and water by a pitched blade turbine in a cylindrical vessel is studied numerically.Three-dimensional simulations combined with a hybrid front-tracking/level-set method are employed to capturethe complex flow and interfacial dynamics. A large eddy simulation approach, with a Lilly-Smagorinsky model, isemployed to simulate the turbulent two-phase dynamics at large Re = 5663 - 56632. The numerical predictionsare validated against previous experimental work involving single-drop breakup in a stirred vessel. For small Re,the interface is deformed but does not reach the impeller hub, assuming instead the shape of a Newton’s Bucket.As the rotating speed increases, the deforming interface attaches to the impeller hub which leads to the formationof long ligaments that subsequently break up into small droplets. For the largest Re studied, the system dynamicsbecomes extremely complex wherein the creation of ligaments, their breakup, and the coalescence of drops occursimultaneously. The simulation outcomes are presented in terms of spatio-temporal evolution of the interface shapeand vortical structures. The results of a drop size analysis in terms of the evolution of the number of drops, andtheir size distribution, is also presented as a parametric function of Re.
- Published
- 2022
- Full Text
- View/download PDF