66 results on '"Kasprzak, Jacek"'
Search Results
52. Four‐wave mixing from individual excitons: Intensity dependence and imaging
- Author
-
Kasprzak, Jacek, primary and Langbein, Wolfgang, additional
- Published
- 2009
- Full Text
- View/download PDF
53. Vectorial four-wave mixing field dynamics from individual excitonic transitions
- Author
-
Kasprzak, Jacek, primary and Langbein, Wolfgang, additional
- Published
- 2008
- Full Text
- View/download PDF
54. Ultrafast nonlinear spectroscopy of individual quantum dots: imaging and coherent coupling
- Author
-
Kasprzak, Jacek, primary, Patton, Brian, additional, and Langbein, Wolfgang, additional
- Published
- 2008
- Full Text
- View/download PDF
55. Spontaneous Coherent Phase Transition of Polaritons in CdTe Microcavities
- Author
-
Richard, Maxime, primary, Kasprzak, Jacek, additional, Romestain, Robert, additional, André, Régis, additional, and Dang, Le Si, additional
- Published
- 2005
- Full Text
- View/download PDF
56. Angle resolved spectroscopy of polariton stimulation under non-resonant excitation in CdTe II–VI microcavity
- Author
-
Richard, Maxime, primary, Kasprzak, Jacek, additional, André, Régis, additional, Dang, Le Si, additional, and Romestain, Robert, additional
- Published
- 2004
- Full Text
- View/download PDF
57. Ultrafast nonlinear spectroscopy of individual quantum dots: imaging and coherent coupling.
- Author
-
Kasprzak, Jacek, Patton, Brian, and Langbein, Wolfgang
- Published
- 2008
- Full Text
- View/download PDF
58. Coherent dynamics of resonantly excited excitons in monolayers of transition metal dichalcogenides.
- Author
-
Betz, Markus, Elezzabi, Abdulhakem Y., Jakubczyk, Tomasz, Bartos, Miroslav, Scarpelli, Lorenzo, Nogajewski, Karol, Langbein, Wolfgang, Potemski, Marek, and Kasprzak, Jacek
- Published
- 2019
- Full Text
- View/download PDF
59. MODELLING A WIND FIELD EFFECTING A SMOKE.
- Author
-
Kasprzak, Jacek and Raczkowski, Jacek
- Published
- 1998
60. Coherent dynamics of one and two-photon states in a strongly coupled single quantum dot-cavity system
- Author
-
Kasprzak, Jacek, Langbein, Wolfgang Werner, Reitzenstein, S., Kistner, C., Schneider, C., Strauss, M., Hofling, S., Forchel, A., Kasprzak, Jacek, Langbein, Wolfgang Werner, Reitzenstein, S., Kistner, C., Schneider, C., Strauss, M., Hofling, S., and Forchel, A.
- Abstract
Heterodyne spectral interferometry is employed to perform four-wave mixing spectroscopy on a strongly-coupled system of an exciton confined in a single quantum dot and a photon mode of a pillar microcavity. The coherent dynamics of one and two photon states are directly observed and the validity of the Jaynes-Cummings model is tested.
61. Up on the Jaynes-Cummings ladder of an exciton-cavity system
- Author
-
Song, J.- J., Tsen, K. -T., Betz, M., Elezzabi, A. Y., Kasprzak, Jacek, Reitzenstein, S., Muljarov, Egor A., Kistner, C., Schneider, C., Strauss, M., Höfling, S., Forchel, A., Langbein, Wolfgang Werner, Song, J.- J., Tsen, K. -T., Betz, M., Elezzabi, A. Y., Kasprzak, Jacek, Reitzenstein, S., Muljarov, Egor A., Kistner, C., Schneider, C., Strauss, M., Höfling, S., Forchel, A., and Langbein, Wolfgang Werner
- Abstract
Light and matter can be unified under the strong coupling regime, creating superpositions of both, called dressed states or polaritons. After initially being demonstrated in bulk semiconductors and atomic systems ,strong coupling phenomena have been realized in solid state optical microcavities. They form an essential ingredient in the exciting physics spanning from many-body quantum coherence phenomena, like Bose-Einstein condensation and superfluidity, to cavity quantum electrodynamics (cQED). A widely used approach within cQED is the Jaynes-Cummings (JC) model that describes the interaction of a single fermionic two-level system with a single bosonic photon mode. For a photon number larger than one, known as quantum strong coupling (QSC), a significant anharmonicity is predicted for the ladder-like spectrum of dressed states. For optical transitions in semiconductor nanostructures, first signatures of the quantum strong coupling were recently published. In our latest report we applied advanced coherent nonlinear spectroscopy to explore a strongly coupled exciton-cavity system. Specifically, we measured and simulated its four-wave mixing (FWM) response, granting direct access to the first two rungs of the JC ladder. This paper summarizes the main results of Ref. 15 and adds FWM experiments obtained on a micropillar cavity in which a doublet of quantum dot (QD) excitons interacts with the cavity mode in the limit of weak to strong coupling.
62. A coherent light-matter interface with a semiconductor quantum dot in an optical microcavity
- Author
-
Najer, Daniel, Warburton, Richard, and Kasprzak, Jacek
- Subjects
Physics::Optics - Abstract
The strong-coupling regime of cavity-quantum-electrodynamics (cQED) represents the light-matter interaction at the fully quantum level. Adding a single photon shifts the resonance frequencies, a profound nonlinearity. cQED is a test-bed of quantum optics and the basis of photon-photon and atom-atom entangling gates. At microwave frequencies, success in cQED has had a transformative effect. At optical frequencies, the gates are potentially much faster; the photons can propagate over long distances; and the photons can be detected easily, ideal features for quantum networks. Following pioneering work on single atoms, solid-state implementations using semiconductor quantum dots are emerging, an important prospect for quantum technology. We present here a gated, ultralow-loss microcavity-device which forms a highly coherent photon$-$quantum-dot interface with a cooperativity of $C=150$. The gates allow both the quantum dot charge state and resonance frequency to be controlled electrically; crucially, they eliminate the noise-source which has complicated quantum dot cQED in the past $-$ scattering from the bare microcavity mode even at the quantum dot-microcavity resonance. Even in the microcavity, the quantum dot has a linewidth close to the radiative limit. In addition to a very pronounced avoided-crossing in the spectral domain, we observe a clear coherent exchange of a single energy-quantum between the ``atom" and cavity in the time domain (vacuum Rabi-oscillations). Decoherence arises predominantly via the atom and photon loss-channels. The coherence is exploited to probe the transitions between the singly- and doubly-excited photon-atom system via photon-statistics spectroscopy. We propose this system as a platform for quantum technology, for instance a photon-photon entangling gate.
- Published
- 2019
63. Kohärent getriebene Exzitonpolaritonen und direktionale cQED-Effekte in einem Quantenpunkt-Mikropillarsystem
- Author
-
Hopfmann, Caspar, Reitzenstein, Stephan, Technische Universität Berlin, Kasprzak, Jacek, and Knorr, Andreas
- Subjects
ddc:535 - Abstract
Cavity quantum electrodynamic (cQED) systems have attracted extensive research interest in the past decades as the main driving force of quantum optics. First experimental demonstrations focused on the enhancement of spontaneous emission and optical nonlinearities related to a single quantum emitter confined in a microcavity. Major technological effort was needed to enter the strong coupling regime of single emitter cQED to study for instance the non-harmonicity of resulting Jaynes-Cummings ladder and to perform quantum non-demolition measurements at the heart of quantum optics. Corresponding milestone experiments paved the way towards the realization of a wide variety of non-classical light sources bringing the concept of photonic quantum networks to a practical level. cQED systems can be realized using atomic, superconducting and semiconductor platforms. In view of future applications in the quantum information technology, the solid state platform of microcavities with embedded quantum emitters is the most attractive one as it promises low-cost mass production as well as interoperability with the integrated electronic circuit technology of today. Therefore, quantum dot (QD)-microcavity systems are very attractive for further investigations in this field. Indeed, even though cQED effects have been studied for many years now, there are still fundamental aspects remaining to be explored. One example is the exploration of a strongly coupled cQED system under coherent optical excitation which is one of the primary goals of this work. The work presented in this thesis aims at a deeper understanding of cQED effects in semiconductor based implementations of this central topic of quantum optics. It includes comprehensive spatially-resolved studies of the QD-micropillar system in the both weak and strong coupling regime. For this purpose an advanced 90 degree excitation and detection scheme, suitable for efficient wavelength-independent driving of the coupled exciton (X) and cavity mode (C) system, was implemented. This flexible and powerful technique enables access to the three-dimensional emission characteristics of QD-micropillars providing important new insight into cQED effects which is the central aspect of the first part of this thesis. The performed studies show for instance a pronounced anticorrelation (correlation) of the directional emission characteristics down to the single emitter level in the weak (strong) coupling regime demonstrating directly their fundamentally different nature. Related investigations of the lasing regime present a straightforward characterization method to demonstrate lasing action in high-Beta microlasers without the need for time consuming studies employing photon statistics. The second part of the thesis addresses another very important yet unexplored fundamental aspect of cQED. The main focus is on coherently-driven strongly-coupled QD-microcavity systems. Of particular interest is the regime where the coherent excitation dresses the X-C polariton at high excitation powers. This regime is found at the crossover from a quantum (Jaynes Cummings) to a semi-classical (Mollow Triplet-like) system and can be observed between the limiting cases of an anharmonic and a harmonic ladder solely by varying the excitation strength. An indispensable condition for the first observation of this transitory regime is driving the system through the matter (X) component, which distinguishes this work from previous studies. Counterintuitively, significant cavity losses with respect to the coupling strength are required to create the highly coherent state of the laser-dressed polariton. Moreover, this work pioneers in resonance fluorescence (RF) studies of strongly-coupled QD-microcavity systems and reveals that strong X-C coupling suppresses the RF substantially. Additionally, injection pulling of a single polariton is observed for the first time in the QD-microcavity system, which links this classical effect of injection locking, which is also found in macroscopic lasers, to the quantum regime. Complementary studies on long range off-resonant X-C coupling, mutual coupling of two QD Xs as well as temperature stability of the coherent coupling regime deepen the fundamental understanding of the strong light-matter interaction in semiconductor systems. Kavitätsquantenelektrodynamische (cQED) Systeme sind die treibende Kraft der Quantenoptik und haben in den vergangenen Dekaden weitreichendes wissenschaftliches Interesse auf sich gezogen. Erste Experimente demonstrierten die verstärkte spontane Emission und optische Nichtlinearitäten von einem einzelnen Quantenemitter, eingebettet in einer Mikrokavität. Großer technologischer Aufwand musste betrieben werden, um das Regime der starken Kopplung eines einzelnen Emitters zu erreichen und somit, unter anderem, die anharmone Jaynes-Cummings-Leiter zu untersuchen und zerstörungsfreie Quantenmessungen durchzuführen, die den Kern der Quantenoptik ausmachen. Dazugehörige experimentelle Meilensteine haben den Weg für die Realisierung einer großen Bandbreite von nichtklassischen Lichtquellen bereitet, die die Umsetzung von photonischen Quantennetzwerken ermöglichen. cQED Systeme können realisiert werden mithilfe von atomaren, supraleitenden oder Halbleiter basierten Quantenemittern. Mit Blick auf zukünftige Quanteninformationstechnologien sind Halbleitermikrokavitäten mit eingeschlossenen Quantenemittern eines der vielversprechensten Festkörpersysteme, da diese kostengünstige Massenfertigung als auch Kompatibilität zur derzeitigen Mikroelektronik versprechen. Daher sind Quantenpunkt (QD)-Mikrokavitäten sehr attraktive Kandidaten für weiterführende Untersuchungen in diesem Teil der Quantenphysik. Auch wenn cQED Effekte nun seit vielen Jahren untersucht werden, so gilt es doch noch einige fundamentale Aspekte zu beleuchten. Ein Beispiel ist die Untersuchung eines stark gekoppelten cQED Systems mithilfe kohärenter Anregung, was auch eines der primären Ziele dieser Arbeit ist. Der Inhalt dieser Arbeit zielt auf die Vertiefung des Verständnisses von cQED Effekten in Halbleiter basierten Implementationen dieses zentralen Teils der Quantenoptik ab. Sie beinhaltet umfassende ortsaufgelöste Studien von QD-Mikrosäulenresonatoren sowohl in dem Regime der schwachen als auch der starken Kopplung. Zu diesem Zweck wurde ein einmaliges 90 degree Anregungs- und Detektionsschema, welches sowohl für kohärente als auch inkohärente Anregung von gekoppelten Exzitonen (X) und Kavitätsmoden (C) geeignet ist, implementiert. Diese flexible und mächtige Methode ermöglicht Zugang zu den dreidimensionalen Emissionscharakteristiken von QD-Mikrosäulenresonatoren, was auch zu wichtigen neuen Erkenntnissen über cQED Effekten führt. Dies ist das zentrale Thema des ersten Abschnitts dieser Dissertation. Die durchgeführten Untersuchungen zeigen zum Beispiel eine deutliche Antikorrelation (Korrelation) der direktionalen Emissionscharakteristiken bis hinunter zu einzelnen Emittern im Regime der schwachen (starken) Licht-Materie-Wechselwirkung, womit auch die unterschiedliche Natur dieser Kopplungsregime verdeutlicht wird. Verwandte Untersuchungen des Laserregimes führten zu einer stark vereinfachten Charakterisierungsmethode von Mikrolasern mit hohem Beta-Faktor ohne die sonst üblichen zeitaufwendigen Studien der Photonenstatistik. Der zweite Teil dieser Dissertation adressiert einen weiteren sehr wichtigen, bisher unerforschten, fundamentalen Aspekt der cQED. Der hauptsächliche Fokus liegt dabei auf kohärent-getriebenen stark gekoppelten QD-Mikrosäulenresonatoren. Von großem Interesse ist das Regime, in dem die starke kohärente Anregung das X-C Polariton bekleidet. Dieses Regime findet sich an dem Übergang von einem Quantensystem (Jaynes Cummings) zu einem klassischen (Mollow Triplet förmigen) System und kann zwischen den Grenzfällen der anharmonischen und harmonischen Zustandsleiter nur durch Variation der Anregungsstärke beobachtet werden. Die zwingende Voraussetzung für die Beobachtbarkeit des Übergangs ist, dass die Anregung durch die Materiekomponente des Systems erfolgt. Dies unterscheidet diese Arbeit von vorangegangen Studien. Unerwarteterweise sind auch signifikante Kavitätsverluste eine unabdingbare Voraussetzung für die Beobachtung des hochgradig kohärenten Zustandes des bekleideten Polaritons. Des Weiteren ist diese Arbeit ein Vorreiter in der Untersuchung von stark gekoppelten Systemen mithilfe von Resonanzfluoreszenz (RF) und beschreibt, dass die starke X-C Kopplung das RF Signal deutlich unterdrückt. Ferner wurde die Verzerrung des Polaritons durch Injektion von Licht zum ersten Mal für QD-Mikrokavitäten beschrieben. Dies verbindet den klassischen Effekt der Injektionskopplung, den man unter anderem in makroskopischen Lasern findet, mit dem Quantenregime. Ergänzende Untersuchungen zu langreichweitigen nicht-resonanten Kopplungsmechanismen, der gemeinsamen Kopplung von zwei QD X als auch der temperaturstabilen kohärenten Kopplung vertiefen das grundlegende Verständnis der starken Wechselwirkung von Licht und Materie in Halbleitersystemen.
- Published
- 2018
64. Coherent imaging and dynamics of excitons in MoSe 2 monolayers epitaxially grown on hexagonal boron nitride.
- Author
-
Połczyńska KE, Le Denmat S, Taniguchi T, Watanabe K, Potemski M, Kossacki P, Pacuski W, and Kasprzak J
- Abstract
Using four-wave mixing microscopy, we measure the coherent response and ultrafast dynamics of excitons and trions in MoSe
2 monolayers grown by molecular beam epitaxy on thin films of hexagonal boron nitride. We assess inhomogeneous and homogeneous broadenings in the transition spectral lineshape. The impact of phonons on the homogeneous dephasing is inferred via the temperature dependence of the dephasing. Four-wave mixing mapping, combined with atomic force microscopy, reveals spatial correlations between exciton oscillator strength, inhomogeneous broadening and the sample morphology. The quality of the coherent optical response of epitaxially grown transition metal dichalcogenides now becomes comparable to the samples produced by mechanical exfoliation, enabling the coherent nonlinear spectroscopy of innovative materials, like magnetic layers or Janus semiconductors.- Published
- 2023
- Full Text
- View/download PDF
65. Destructive Photon Echo Formation in Six-Wave Mixing Signals of a MoSe 2 Monolayer.
- Author
-
Hahn T, Vaclavkova D, Bartos M, Nogajewski K, Potemski M, Watanabe K, Taniguchi T, Machnikowski P, Kuhn T, Kasprzak J, and Wigger D
- Abstract
Monolayers of transition metal dichalcogenides display a strong excitonic optical response. Additionally encapsulating the monolayer with hexagonal boron nitride allows to reach the limit of a purely homogeneously broadened exciton system. On such a MoSe
2 -based system, ultrafast six-wave mixing spectroscopy is performed and a novel destructive photon echo effect is found. This process manifests as a characteristic depression of the nonlinear signal dynamics when scanning the delay between the applied laser pulses. By theoretically describing the process within a local field model, an excellent agreement with the experiment is reached. An effective Bloch vector representation is developed and thereby it is demonstrated that the destructive photon echo stems from a destructive interference of successive repetitions of the heterodyning experiment., (© 2021 The Authors. Advanced Science published by Wiley-VCH GmbH.)- Published
- 2022
- Full Text
- View/download PDF
66. Coherence and Density Dynamics of Excitons in a Single-Layer MoS 2 Reaching the Homogeneous Limit.
- Author
-
Jakubczyk T, Nayak G, Scarpelli L, Liu WL, Dubey S, Bendiab N, Marty L, Taniguchi T, Watanabe K, Masia F, Nogues G, Coraux J, Langbein W, Renard J, Bouchiat V, and Kasprzak J
- Abstract
We measure the coherent nonlinear response of excitons in a single layer of molybdenum disulfide embedded in hexagonal boron nitride, forming a h-BN/MoS
2 / h-BN heterostructure. Using four-wave mixing microscopy and imaging, we correlate the exciton inhomogeneous broadening with the homogeneous one and population lifetime. We find that the exciton dynamics is governed by microscopic disorder on top of the ideal crystal properties. Analyzing the exciton ultrafast density dynamics using amplitude and phase of the response, we investigate the relaxation pathways of the resonantly driven exciton population. The surface protection via encapsulation provides stable monolayer samples with low disorder, avoiding surface contaminations and the resulting exciton broadening and modifications of the dynamics. We identify areas localized to a few microns where the optical response is totally dominated by homogeneous broadening. Across the sample of tens of micrometers, weak inhomogeneous broadening and strain effects are observed, attributed to the remaining interaction with the h-BN and imperfections in the encapsulation process.- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.