51. Misaligned streamers around a Galactic Centre black hole from a single cloud's infall
- Author
-
W. K. M. Rice, Melvyn B. Davies, William Lucas, and Ian A. Bonnell
- Subjects
Physics ,Angular momentum ,Supermassive black hole ,Orbital plane ,010308 nuclear & particles physics ,Star formation ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astronomy ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Astrophysics - Astrophysics of Galaxies ,01 natural sciences ,Accretion (astrophysics) ,Galaxy ,Black hole ,Stars ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
We follow the near radial infall of a prolate cloud onto a 4 x 10^6 Msun supermassive black hole in the Galactic Centre using smoothed particle hydrodynamics (SPH). We show that a prolate cloud oriented perpendicular to its orbital plane naturally produces a spread in angular momenta in the gas which can translate into misaligned discs as is seen in the young stars orbiting Sagittarius A*. A turbulent or otherwise highly structured cloud is necessary to avoid cancelling too much angular momentum through shocks at closest approach. Our standard model of a 2 x 10^4 Msun gas cloud brought about the formation of a disc within 0.3 pc from the black hole and a larger, misaligned streamer at 0.5 pc. A total of 1.5 x 10^4 Msun of gas formed these structures. Our exploration of the simulation parameter space showed that when star formation occurred, it resulted in top-heavy IMFs with stars on eccentric orbits with semi-major axes 0.02 to 0.3 pc and inclinations following the gas discs and streamers. We suggest that the single event of an infalling prolate cloud can explain the occurrence of multiple misaligned discs of young stars., 14 pages, 17 figures, 1 table, accepted for publication in MNRAS
- Published
- 2013
- Full Text
- View/download PDF