Three strains of Vibrio parahaemolyticus (690, BCRC 13023 and BCRC 13025) implicated in food poisoning outbreaks in Taiwan were subjected to acid adaptation at pH 5.5 for 90 min. The growth behaviors of acid-adapted and non-adapted V. parahaemolyticus in the media supplemented with various nitrogen and carbon sources were investigated. The effects of acid adaptation on the thermostable direct hemolysin (TDH) secretion and fatty acid profiles of V. parahaemolyticus were also examined. Results showed that acid-adapted and non-adapted V. parahaemolyticus 690, BCRC 13023 and BCRC 13025 grew similarly in TSB-3% NaCl and basal media supplemented with various carbon and nitrogen sources during incubation period. Higher TDH secretion was noted with V. parahaemolyticus 690 among the three strains. However, acid-adapted strains produced less amounts of TDH than non-adapted strains when they were grown in TSB-3% NaCl. Additionally, acid adaptation increased the ratio of SFA/USFA in cells of V. parahaemolyticus strains., {"references":["Lou, Y. and A. E. Yousef. 1997. Adaptation to sublethal environmental\nstresses protects Listeria monocytogenes against lethal preservation\nfactors. Appl. Environ. Microbiol. 63: 1252-1255.","Browne, N. and B. Dowds. 2002. Acid stress in the food pathogen\nBacillus cereus. J. Appl. Microbiol. 92: 404-414.","Tetteh, G. L. and L. R. Beuchat. 2003. Exposure of Shigella flexneri to\nacid stress and heat shock enhances acid tolerance. Food Microbiol. 20:\n179-185.","Tosun, H. and S. A. Gönül. 2003. Acid adaptation protects Salmonella\ntyphimurium from environmental stresses. Turk. J. Biol. 27: 31-36.","Bearson, S., B. Bearson and J. W. Foster. 1997. Acid stress responses in\nenterobacteria. FEMS Microbiol. Lett. 147: 173-180.","Abee, T. and J. A. Wouters. 1999. Microbial stress response in minimal\nprocessing. Int. J. Food Microbiol. 50: 65-91.","Audia, J. P., C. C. Webb and J. W. Foster. 2001. Breaking through the\nacid barrier: an orchestrated response to proton stress by enteric bacteria.\nInt. J Med. Microbiol. 291: 97-106.","Brown, J. L., T. Ross, T. A. McMeekin and P. D. Nichols. 1997. Acid\nhabituation of Escherichia coli and the potential role of cyclopropane\nfatty acids in low pH tolerance. Int. J. Food Microbiol. 37: 163-173.","Fozo, E. M., J. K. Kajfasz and R. G. Quivey Jr. 2004. Low pH-induced\nmembrane fatty acid alterations in oral bacteria. FEMS Microbiol. Lett.\n238: 291-295.\n[10] Jobin, M. P., T. Clavel, F. Carlin and P. Schmitt. 2002. Acid tolerance\nresponse is low-pH and late-stationary growth phase inducible in Bacillus\ncereus TZ415. Int. J. Food Microbiol. 79: 65-73.\n[11] Yeung P. S. M. and K. J. Boor. 2004. Effects of acid stress on Vibrio\nparahemolyticus survival and cytotoxicity. J. Food Prot. 67: 1328-1334.\n[12] House, B., J. V. Kus, N. Prayitno, R. Mair, L. Que, F. Chingcuanco, V.\nGannon, D. G. Cvitkovitch and D. B. Foster. 2009. Acid-stress-induced\nchanges in enterohaemorrhagic Escherichia coli O157:H7 virulence.\nMicrobiol. 155: 2907-2918.\n[13] Liston, J. 1990. Microbial hazards of seafood consumption. Food\nTechnol. 44:56-62.\n[14] Daniels, N. A., L. MacKinnon, R. Bishop, S. Altekruse, B. Ray, R. M.\nHammond, S. Thompson, S. Wilson, N. H. Bean and P. M. Griffin. 2000.\nVibrio parahaemolyticus infections in the United States, 1973-1998. J.\nInfect. Dis. 181: 1661-1666.\n[15] Su, Y. C. and C. Liu. 2007. Vibrio parahaemolyticus: a concern of\nseafood safety. Food Microbiol. 24: 549-558.\n[16] Takeda, Y., 1983. Thermostable direct hemolysin of Vibrio\nparahaemolyticus. Pharmacol. Therap. 19: 123-146.\n[17] Raimondi, F., J. P. Y. Kao, C. Fiorentini, A. Fabbri, G. Donelli, N.\nGasparini, A. Rubino and A. Fasano. 2000. Enterotoxicity and\ncytotoxicity of Vibrio parahaemolyticus thermostable direct hemolysin in\nin vitro systems. Infect. Immun. 68: 3180-3185.\n[18] Taiwan Food and Drug Administration (TFDA). 2013. Occurrence of\nfood poisoning outbreaks in Taiwan, 1981-2012. Ministry of Health and\nWelfare, Taipei, Taiwan.\n[19] Centers for Disease Control and Prevention (CDC). 2013. Vibrio\nparahaemolyticus. Available at: http://www.cdc.gov/vibrio/vibriop.html,\naccessed November 12, 2013.\n[20] Chiang M. L., C. C. Chou, H. C. Chen, Y. T. Tseng and M. J. Chen. 2012.\nAdaptive acid tolerance response of Vibrio parahaemolyticus as affected\nby acid adaptation conditions, growth phase, and bacterial strains.\nFoodborne Pathog. Dis. 9: 734-740.\n[21] Chiang M. L., H. C. Chen, C. Wu, Y. T. Tseng and M. J. Chen. 2013.\nEffect of acid adaptation treatment on the survival of Vibrio\nparahaemolyticus in oyster homogenates under heat, cold and simulated\ngastrointestinal conditions. Taiwanese J. Agri. Chem. Food Sci. 51:\n34-42.\n[22] Chiang M. L., H. C. Chen, C. Wu and M. J. Chen. 2014. Effect of acid\nadaptation on the environmental stress tolerance of three strains of Vibrio\nparahaemolyticus. Foodborne Pathog. Dis. 11: 287-294.\n[23] Chiang M. L., H. C. Chen, C. Wu, Y. T. Tseng and M. J. Chen. 2012.\nEffect of acid adaptation on the survival of three Vibrio parahaemolyticus\nstrains under simulated gastric condition and their protein expression\nprofiles. World Acad. Sci. Eng. Technol. 6: 233-236.\n[24] Lepage, G. and C. Roy. 1986. Direct transesterification of all classes of\nlipids in a one-step reaction. J. Lipid Res. 27: 114-120.\n[25] Eguchi, M., T. Nishikawa, K. Macdonald, R. Cavicchioli, J. C. Gottschal\nand S. Kjelleberg. 1996. Responses to stress and nutrient availability by\nthe marine ultramicrobacterium Sphingomonas sp. strain RB2256 Appl.\nEnviron. Microbiol. 62: 1287-1294.\n[26] Schimel, J., T. C. Balser and M. Wallenstein. 2007. Microbial\nstress-response physiology and its implications for ecosystem function.\nEcology 88: 1386-1394.\n[27] Duffy, G., D. Riordan, J. Sheridan, J. Call, R. Whiting, I. Blair and D.\nMcDowell. 2000. Effect of pH on survival, thermotolerance, and\nverotoxin production of Escherichia coli O157: H7 during simulated\nfermentation and storage. J. Food Protect. 63: 12-18.\n[28] Yuk, H. G. and D. L. Marshall. 2004. Adaptation of Escherichia coli\nO157: H7 to pH alters membrane lipid composition, verotoxin secretion,\nand resistance to simulated gastric fluid acid. Appl. Environ. Microbiol.\n70: 3500-3505.\n[29] Yuk, H. G., D. L. Marshall and L. Douglas. 2005. Influence of acetic,\ncitric, and lactic acis on Escherichia coli O157:H7 membrane lipid\ncomposition, verotoxin seretion, and acid resistance in simulated gastric\nfluid. J. Food Prot. 68: 673-679.\n[30] Lepage, C., F. Fayolle, M. Hermann and J. P. Vandecasteele. 1987.\nChanges inmembrane lipid composition of Clostridium acetobutylicum\nduring acetone-butanol fermentation: effects of solvents, growth\ntemperature and pH. Microbiol. 133: 103-110.\n[31] Bodnaruk, P. W. and D. A. Golden. 1996. Influence of pH and incubation\ntemperature on fatty acid composition and virulence factors of Yersinia\nenterocolitica. Food Microbiol. 13: 17-22."]}