51. Automated detection of lung nodules in low-dose computed tomography
- Author
-
Cascio, D., Cheran, S. C., Chincarini, A., De Nunzio, G., Delogu, P., Fantacci, M. E., Gargano, G., Gori, I., Masala, G. L., Martinez, A. Preite, Retico, A., Santoro, M., Spinelli, C., and Tarantino, T.
- Subjects
Physics - Medical Physics - Abstract
A computer-aided detection (CAD) system for the identification of pulmonary nodules in low-dose multi-detector computed-tomography (CT) images has been developed in the framework of the MAGIC-5 Italian project. One of the main goals of this project is to build a distributed database of lung CT scans in order to enable automated image analysis through a data and cpu GRID infrastructure. The basic modules of our lung-CAD system, consisting in a 3D dot-enhancement filter for nodule detection and a neural classifier for false-positive finding reduction, are described. The system was designed and tested for both internal and sub-pleural nodules. The database used in this study consists of 17 low-dose CT scans reconstructed with thin slice thickness (~300 slices/scan). The preliminary results are shown in terms of the FROC analysis reporting a good sensitivity (85% range) for both internal and sub-pleural nodules at an acceptable level of false positive findings (1-9 FP/scan); the sensitivity value remains very high (75% range) even at 1-6 FP/scan, Comment: 4 pages, 2 figures: Proceedings of the Computer Assisted Radiology and Surgery, 21th International Congress and Exhibition, Berlin, Volume 2, Supplement 1, June 2007, pp 357-359
- Published
- 2007