51. Biosynthesis of Copolyesters Consisting of 3-Hydroxyvalerate and Medium-chain-length 3-hydroxyalkanoates by the Pseudomonas aeruginosa P-5 Strain
- Author
-
Sang Hee Woo, Jae Hee Kim, Yu-Yang Ni, and Young Ha Rhee
- Subjects
chemistry.chemical_classification ,Materials science ,Molar concentration ,Valeric acid ,Heptanoic acid ,Nonanoic acid ,Microbiology ,Polyhydroxyalkanoates ,Amino acid ,chemistry.chemical_compound ,Monomer ,chemistry ,Biosynthesis ,Organic chemistry - Abstract
A bacterial strain capable of synthesizing polyhydroxyalkanoates (PHAs) with an unusual pattern of monomer units was isolated from activated sludge using the enrichment culture technique. The organism, identified as Pseudomonas aeruginosa P-5, produced polyesters consisting of 3-hydroxyvalerate and medium-chain-length (MCL) 3-hydroxyalkanoate monomer units when C- odd alkanoic acids such as nonanoic acid and heptanoic acid were fed as the sole carbon source. Solvent fractionation experiments using chloroform and hexane revealed that the 3-hydroxyalkanoate monomer units in these polyesters were copolymerized. The molar concentration of 3-hydroxyvalerate in the polyesters produced were significantly elevated up to 26 mol% by adding 1.0 g/L valeric acid as the cosubstrate. These copolyesters were sticky with low degrees of crystallinity. The PHA synthase genes were cloned, and the deduced amino acid sequences were determined. P. aeruginosa P-5 possessed genes encoding MCL-PHA synthases (PhaC1 and PhaC2) but lacked the short-chain-length PHA synthase gene, suggesting that the MCL-PHA synthases from P. aeruginosa P-5 are uniquely active for polymerizing (R)-3-hydroxyvaleryl-CoA as well as MCL (R)-3-hydroxyacyl-CoAs.
- Published
- 2012
- Full Text
- View/download PDF