51. Heat transfer and fluid flow analysis of a fluidized bed reactor for beam-down optics
- Author
-
Hyun Seok Cho, Koji Matsubara, Selvan Bellan, Tatsuya Kodama, and Nobuyuki Gokon
- Subjects
Materials science ,business.industry ,Fluidized bed ,Heat transfer ,Flow (psychology) ,Fluid dynamics ,Particle ,Mechanics ,Computational fluid dynamics ,business ,Discrete element method ,Beam (structure) - Abstract
A transient three dimensional numerical model of the heat transfer and fluid flow of a windowed fluidized bed reactor for solar thermochemical conversions is formulated and solved using discrete element method coupled to computational fluid dynamics. Radiation transfer equation is solved by discrete ordinate radiation model and the particle collision dynamics is solved by spring-dashpot model based on soft-sphere method. The instantaneous granular flow behavior of the irradiated bed is presented along with the incident radiation and particle size distribution. The results indicate that as time progresses the average velocity of the particle increases due to high temperature and bed expansion effect.
- Published
- 2019