67 results on '"Vujanovic, G."'
Search Results
52. JETSCAPE Collaboration
- Author
-
Angerami, A., primary, Bass, S.A., additional, Cao, S., additional, Chen, Y., additional, Coleman, J., additional, Cunqueiro, L., additional, Dai, T., additional, Du, L., additional, Ehlers, R., additional, Elfner, H., additional, Everett, D., additional, Fan, W., additional, Fries, R., additional, Gale, C., additional, He, Y., additional, Heffernan, M., additional, Heinz, U., additional, Jacak, B.V., additional, Jacobs, P.M., additional, Jeon, S., additional, Kauder, K., additional, Ke, W., additional, Khalaj, E., additional, Kordell, M., additional, Kumar, A., additional, Luo, T., additional, Luzum, M., additional, Majumder, A., additional, McNelis, M., additional, Mulligan, J., additional, Nattrass, C., additional, Oliinychenko, D., additional, Pablos, D., additional, Pang, L.G., additional, Park, C., additional, Paquet, J.-F., additional, Putschke, J.H., additional, Roland, G., additional, Schenke, B., additional, Schwiebert, L., additional, Shen, C., additional, Silva, A., additional, Sirimanna, C., additional, Soltz, R.A., additional, Tachibana, Y., additional, Vujanovic, G., additional, Wang, X.-N., additional, Wolpert, R.L., additional, Xu, Y., additional, and Yang, Z., additional
- Published
- 2021
- Full Text
- View/download PDF
53. Report from Working Group 5
- Author
-
Citron, Z., Dainese, A., Chapon, E., Margutti, J., Marin, A., Marquet, C., Martin Blanco, J., Massacrier, L., Mastroserio, A., Maurice, E., Mayer, C., Mcginn, C., Milhano, G., Dembinski, H., Milov, A., Minissale, V., Mironov, C., Mischke, A., Mohammadi, N., Mulders, M., Murray, M., Narain, M., Di Nezza, P., Nisati, A., d'Enterria, D., Noronha-Hostler, J., Ohlson, A., Okorokov, V., Olness, F., Paakkinen, P., Pappalardo, L., Park, J., Paukkunen, H., Peng, C. C., Pereira Da Costa, H., Grabowska-Bold, I., Perepelitsa, D. V., Peresunko, D., Peters, M., Pettersson, N. E., Piano, S., Pierog, T., Pires, J., Płoskoń, M., Plumari, S., Prino, F., Innocenti, G. M., Puccio, M., Rapp, R., Redlich, K., Reygers, K., Ristea, C. L., Robbe, P., Rossi, A., Rustamov, A., Rybar, M., Schaumann, M., Loizides, C., Schenke, B., Schienbein, I., Schoeffel, L., Selyuzhenkov, I., Sickles, A. M., Sievert, M., Silva, P., Song, T., Spousta, M., Stachel, J., Mohapatra, S., Steinberg, P., Stocco, D., Strickland, M., Strikman, M., Sun, J., Tapia Takaki, D., Tatar, K., Terrevoli, C., Timmins, A., Trogolo, S., Salgado, C. A., Trzeciak, B., Trzupek, A., Ulrich, R., Uras, A., Venugopalan, R., Vitev, I., Vujanovic, G., Wang, J., Wang, T. W., Xiao, R., Verweij, M., Xu, Y., Zampolli, C., Zanoli, H., Zhou, M., Zhou, Y., Weber, M., Grosse-Oetringhaus, J. F., Aichelin, J., Angerami, A., Apolinario, L., Arleo, F., Armesto, N., Arnaldi, R., Arslandok, M., Azzi, P., Bailhache, R., Bass, S. A., Jowett, J. M., Bedda, C., Behera, N. K., Bellwied, R., Beraudo, A., Bi, R., Bierlich, C., Blum, K., Borissov, A., Braun-Munzinger, P., Bruce, R., Lee, Y.-J., Bruno, G. E., Bufalino, S., Castillo Castellanos, J., Chatterjee, R., Chen, Y., Chen, Z., Cheshkov, C., Chujo, T., Conesa del Valle, Z., Contreras Nuno, J. G., Wiedemann, U. A., Cunqueiro Mendez, L., Dahms, T., Dang, N. P., De la Torre, H., Dobrin, A. F., Doenigus, B., Van Doremalen, L., Du, X., Dubla, A., Dumancic, M., Winn, M., Dyndal, M., Fabbietti, L., Ferreiro, E. G., Fionda, F., Fleuret, F., Floerchinger, S., Giacalone, G., Giammanco, A., Gossiaux, P. B., Graziani, G., Andronic, A., Greco, V., Grelli, A., Grosa, F., Guilbaud, M., Gunji, T., Guzey, V., Hadjidakis, C., Hassani, S., He, M., Helenius, I., Bellini, F., Huo, P., Jacobs, P. M., Janus, P., Jebramcik, M. A., Jia, J., Kalweit, A. P., Kim, H., Klasen, M., Klein, S. R., Klusek-Gawenda, M., Bruna, E., Kremer, J., Krintiras, G. K., Krizek, F., Kryshen, E., Kurkela, A., Kusina, A., Lansberg, J.-P., Lea, R., van Leeuwen, M., and Li, W.
- Subjects
ion [oxygen] ,kinematics ,density [parton] ,High Energy Physics::Phenomenology ,nucleus ,matter [quantum chromodynamics] ,plasma [quark gluon] ,scattering [p p] ,CERN LHC Coll [interpretation of experiments] ,Nuclear Experiment ,saturation [parton] ,heavy ion ,beam [p] - Abstract
The future opportunities for high-density QCD studies with ion and proton beams at the LHC are presented. Four major scientific goals are identified: the characterisation of the macroscopic long wavelength Quark-Gluon Plasma (QGP) properties with unprecedented precision, the investigation of the microscopic parton dynamics underlying QGP properties, the development of a unified picture of particle production and QCD dynamics from small (pp) to large (nucleus--nucleus) systems, the exploration of parton densities in nuclei in a broad ($x$, $Q^2$) kinematic range and the search for the possible onset of parton saturation. In order to address these scientific goals, high-luminosity Pb-Pb and p-Pb programmes are considered as priorities for Runs 3 and 4, complemented by high-multiplicity studies in pp collisions and a short run with oxygen ions. High-luminosity runs with intermediate-mass nuclei, for example Ar or Kr, are considered as an appealing case for extending the heavy-ion programme at the LHC beyond Run 4. The potential of the High-Energy LHC to probe QCD matter with newly-available observables, at twice larger center-of-mass energies than the LHC, is investigated.
- Published
- 2019
- Full Text
- View/download PDF
54. Multi-stage evolution of heavy quarks in the quark-gluon plasma
- Author
-
Vujanovic, G., Angerami, A., Bass, S. A., Cao, S., Chen, Y., Coleman, J., Cunqueiro, L., Dai, T., Du, L., Ehlers, R., Elfner, H., Everett, D., Fan, W., Fries, R., Gale, C., He, Y., Heffernan, M., Heinz, U., Jacak, B. V., Jacobs, P. M., Jeon, S., Kauder, K., Ke, W., Khalaj, E., Kordell, M., Kumar, A., Luo, T., Luzum, M., Majumder, A., McNelis, M., Mulligan, J., Nattrass, C., Oliinychenko, D., Pablos, D., Pang, L. G., Park, C., Paquet, J. -F., Putschke, J. H., Roland, G., Schenke, B., Schwiebert, L., Shen, C., Silva, A., Sirimanna, C., Soltz, R. A., Tachibana, Y., Wang, X. -N., Wolpert, R. L., Xu, Y., and Yang, Z.
- Subjects
Quark ,Physics ,Nuclear and High Energy Physics ,Particle physics ,Nuclear Theory ,010308 nuclear & particles physics ,High Energy Physics::Lattice ,High Energy Physics::Phenomenology ,Monte Carlo method ,FOS: Physical sciences ,Plasma ,Software package ,01 natural sciences ,Nuclear Theory (nucl-th) ,Multi stage ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,0103 physical sciences ,Quark–gluon plasma ,High Energy Physics::Experiment ,Nuclear Experiment ,010306 general physics ,Parton shower ,Event (particle physics) - Abstract
The interaction of heavy flavor with the quark-gluon plasma (QGP) in relativistic heavy-ion collisions is studied using JETSCAPE, a publicly available software package containing a framework for Monte Carlo event generators. Multi-stage (and multi-model) evolution of heavy quarks within JETSCAPE provides a cohesive description of heavy flavor quenching inside the QGP. As the parton shower develops, a model becomes active as soon as its kinematic region of validity is reached. Two combinations of heavy-flavor energy-loss models are explored within a realistic QGP medium, using parameters which were tuned to describe {\it light-flavor} partonic energy-loss., 4 pages, 2 figures, contribution to the Quark Matter 2019 proceedings
- Published
- 2021
- Full Text
- View/download PDF
55. Report from Working Group 5: Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams
- Author
-
Citron, Z., Dainese, A., Grosse-Oetringhaus, J.F., Jowett, J.M., Lee, Y.-J., Wiedemann, U.A., Winn, M., Andronic, A., Bellini, F., Bruna, E., Chapon, E., Dembinski, H., d'Enterria, D., Grabowska-Bold, I., Innocenti, G.M., Loizides, C., Mohapatra, S., Salgado, C.A., Verweij, M., Weber, M., Aichelin, J., Angerami, A., Apolinario, L., Arleo, F., Armesto, N., Arnaldi, R., Arslandok, M., Azzi, P., Bailhache, R., Bass, S.A., Bedda, C., Behera, N.K., Bellwied, R., Beraudo, A., Bi, R., Bierlich, C., Blum, K., Borissov, A., Braun-Munzinger, P., Bruce, R., Bruno, G.E., Bufalino, S., Castillo Castellanos, J., Chatterjee, R., Chen, Y., Chen, Z., Cheshkov, C., Chujo, T., Conesa del Valle, Z., Contreras Nuno, J.G., Cunqueiro Mendez, L., Dahms, T., Dang, N.P., De la Torre, H., Dobrin, A.F., Doenigus, B., Van Doremalen, L., Du, X., Dubla, A., Dumancic, M., Dyndal, M., Fabbietti, L., Ferreiro, E.G., Fionda, F., Fleuret, F., Floerchinger, S., Giacalone, G., Giammanco, A., Gossiaux, P.B., Graziani, G., Greco, V., Grelli, A., Grosa, F., Guilbaud, M., Gunji, T., Guzey, V., Hadjidakis, C., Hassani, S., He, M., Helenius, I., Huo, P., Jacobs, P.M., Janus, P., Jebramcik, M.A., Jia, J., Kalweit, A.P., Kim, H., Klasen, M., Klein, S.R., Klusek-Gawenda, M., Kremer, J., Krintiras, G.K., Krizek, F., Kryshen, E., Kurkela, A., Kusina, A., Lansberg, J.-P., Lea, R., van Leeuwen, M., Li, W., Margutti, J., Marin, A., Marquet, C., Martin Blanco, J., Massacrier, L., Mastroserio, A., Maurice, E., Mayer, C., Mcginn, C., Milhano, G., Milov, A., Minissale, V., Mironov, C., Mischke, A., Mohammadi, N., Mulders, M., Murray, M., Narain, M., Di Nezza, P., Nisati, A., Noronha-Hostler, J., Ohlson, A., Okorokov, V., Olness, F., Paakkinen, P., Pappalardo, L., Park, J., Paukkunen, H., Peng, C.C., Pereira Da Costa, H., Perepelitsa, D.V., Peresunko, D., Peters, M., Pettersson, N.E., Piano, S., Pierog, T., Pires, J., Płoskoń, M., Plumari, S., Prino, F., Puccio, M., Rapp, R., Redlich, K., Reygers, K., Ristea, C.L., Robbe, P., Rossi, A., Rustamov, A., Rybar, M., Schaumann, M., Schenke, B., Schienbein, I., Schoeffel, L., Selyuzhenkov, I., Sickles, A.M., Sievert, M., Silva, P., Song, T., Spousta, M., Stachel, J., Steinberg, P., Stocco, D., Strickland, M., Strikman, M., Sun, J., Tapia Takaki, D., Tatar, K., Terrevoli, C., Timmins, A., Trogolo, S., Trzeciak, B., Trzupek, A., Ulrich, R., Uras, A., Venugopalan, R., Vitev, I., Vujanovic, G., Wang, J., Wang, T.W., Xiao, R., Xu, Y., Zampolli, C., Zanoli, H., Zhou, M., and Zhou, Y.
- Subjects
nucl-th ,hep-ex ,Nuclear Physics - Theory ,High Energy Physics::Phenomenology ,High Energy Physics::Experiment ,Nuclear Physics - Experiment ,hep-ph ,Nuclear Experiment ,nucl-ex ,Particle Physics - Experiment ,Particle Physics - Phenomenology - Abstract
The future opportunities for high-density QCD with ion and proton beams at the LHC are presented. Four major scientific goals are identified: the characterisation of the macroscopic long wavelength Quark-Gluon Plasma (QGP) properties with unprecedented precision, the investigation of the microscopic parton dynamics underlying QGP properties, the development of a unified picture of particle production and QCD dynamics from small (pp) to large (nucleus–nucleus) systems, the exploration of parton densities in nuclei in a broad (x, Q2) kinematic range and the search for the possible onset of parton saturation. In order to address these scientific goals, high-luminosity Pb–Pb and p–Pb programmes are considered as priorities for Runs 3 and 4, complemented by high-multiplicity studies in pp collisions and a short run with Oxygen ions. High-luminosity runs with intermediate-mass nuclei, for example Ar or Kr, are considered as an appealing case for extending the heavy-ion programme at the LHC beyond Run 4. The potential of the High-Energy LHC to probe QCD matter with newly-available observables and phenomena is investigated. The future opportunities for high-density QCD studies with ion and proton beams at the LHC are presented. Four major scientific goals are identified: the characterisation of the macroscopic long wavelength Quark-Gluon Plasma (QGP) properties with unprecedented precision, the investigation of the microscopic parton dynamics underlying QGP properties, the development of a unified picture of particle production and QCD dynamics from small (pp) to large (nucleus--nucleus) systems, the exploration of parton densities in nuclei in a broad ($x$, $Q^2$) kinematic range and the search for the possible onset of parton saturation. In order to address these scientific goals, high-luminosity Pb-Pb and p-Pb programmes are considered as priorities for Runs 3 and 4, complemented by high-multiplicity studies in pp collisions and a short run with oxygen ions. High-luminosity runs with intermediate-mass nuclei, for example Ar or Kr, are considered as an appealing case for extending the heavy-ion programme at the LHC beyond Run 4. The potential of the High-Energy LHC to probe QCD matter with newly-available observables, at twice larger center-of-mass energies than the LHC, is investigated.
- Published
- 2018
56. Resummed hydrodynamic expansion for a plasma of particles interacting with fields
- Author
-
Tinti, L., primary, Vujanovic, G., additional, Noronha, J., additional, and Heinz, U., additional
- Published
- 2019
- Full Text
- View/download PDF
57. Multistage Monte Carlo simulation of jet modification in a static medium
- Author
-
Massachusetts Institute of Technology. Department of Physics, Barbieri, Richard Alexander, Roland, Gunther M, Velicanu, Dragos Alexandru, Cao, S., Park, C., Bass, S. A., Bazow, D., Bernhard, J., Coleman, J., Fries, R., Gale, C., He, Y., Heinz, U., Jacak, B. V., Jacobs, P. M., Jeon, S., Kordell, M., Kumar, A., Luo, T., Majumder, A., Nejahi, Y., Pablos, D., Pang, L.-G., Putschke, J. H., Rose, S., Schenke, B., Schwiebert, L., Shen, C., Sirimanna, C., Soltz, R. A., Vujanovic, G., Wang, X.-N., Wolpert, R. L., Massachusetts Institute of Technology. Department of Physics, Barbieri, Richard Alexander, Roland, Gunther M, Velicanu, Dragos Alexandru, Cao, S., Park, C., Bass, S. A., Bazow, D., Bernhard, J., Coleman, J., Fries, R., Gale, C., He, Y., Heinz, U., Jacak, B. V., Jacobs, P. M., Jeon, S., Kordell, M., Kumar, A., Luo, T., Majumder, A., Nejahi, Y., Pablos, D., Pang, L.-G., Putschke, J. H., Rose, S., Schenke, B., Schwiebert, L., Shen, C., Sirimanna, C., Soltz, R. A., Vujanovic, G., Wang, X.-N., and Wolpert, R. L.
- Abstract
The modification of hard jets in an extended static medium held at a fixed temperature is studied using three different Monte Carlo event generators: linear Boltzmann transport (LBT), modular all twist transverse-scattering elastic-drag and radiation (MATTER), and modular algorithm for relativistic treatment of heavy-ion interactions (MARTINI). Each event generator contains a different set of assumptions regarding the energy and virtuality of the partons within a jet versus the energy scale of the medium and, hence, applies to a different epoch in the space-time history of the jet evolution. Here modeling is developed where a jet may sequentially transition from one generator to the next, on a parton-by-parton level, providing a detailed simulation of the space-time evolution of medium modified jets over a much broader dynamic range than has been attempted previously in a single calculation. Comparisons are carried out for different observables sensitive to jet quenching, including the parton fragmentation function and the azimuthal distribution of jet energy around the jet axis. The effect of varying the boundary between different generators is studied and a theoretically motivated criterion for the location of this boundary is proposed. The importance of such an approach with coupled generators to the modeling of jet quenching is discussed., National Science Foundation (U.S.) (Grant ACI-1550172)
- Published
- 2018
58. Detecting cosmic structure via 21-cm intensity mapping on the Australian Telescope Compact Array
- Author
-
Vujanovic, G., primary, Pen, U.-L., additional, Reid, M., additional, and Bond, J. R., additional
- Published
- 2012
- Full Text
- View/download PDF
59. Bayesian analysis of QGP jet transport using multi-scale modeling applied to inclusive hadron and reconstructed jet data
- Author
-
Ehlers, R., Angerami, A., Arora, R., Bass, S. A., Cao, S., Chen, Y., Du, L., Dai, T., Elfner, H., Fan, W., Fries, R. J., Gale, C., He, Y., Heffernan, M., Heinz, U., Jacak, B. V., Jacobs, P. M., Jeon, S., Ji, Y., Kasper, L., Ke, W., Kelsey, M., Kordell, M., Kumar, A., Latessa, J., Lee, Y. -J, Liyanage, D., Lopez, A., Luzum, M., Mak, S., Majumder, A., Mankolli, A., Martin, C., Mehryar, H., Mengel, T., Mulligan, J., Nattrass, C., Oliinychenko, D., Paquet, J. -F, Putschke, J. H., Roland, G., Schenke, B., Schwiebert, L., Sengupta, A., Chun Shen, Silva, A., Sirimanna, C., Soeder, D., Soltz, R. A., Soudi, I., Staudenmaier, J., Strickland, M., Tachibana, Y., Velkovska, J., Vujanovic, G., Wang, X. -N, Wolpert, R. L., and Zhao, W.
- Subjects
Nuclear Theory (nucl-th) ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,Nuclear Theory ,FOS: Physical sciences ,Nuclear Experiment (nucl-ex) ,Nuclear Experiment - Abstract
The JETSCAPE Collaboration reports a new determination of jet transport coefficients in the Quark-Gluon Plasma, using both reconstructed jet and hadron data measured at RHIC and the LHC. The JETSCAPE framework incorporates detailed modeling of the dynamical evolution of the QGP; a multi-stage theoretical approach to in-medium jet evolution and medium response; and Bayesian inference for quantitative comparison of model calculations and data. The multi-stage framework incorporates multiple models to cover a broad range in scale of the in-medium parton shower evolution, with dynamical choice of model that depends on the current virtuality or energy of the parton. We will discuss the physics of the multi-stage modeling, and then present a new Bayesian analysis incorporating it. This analysis extends the recently published JETSCAPE determination of the jet transport parameter $\hat{q}$ that was based solely on inclusive hadron suppression data, by incorporating reconstructed jet measurements of quenching. We explore the functional dependence of jet transport coefficients on QGP temperature and jet energy and virtuality, and report the consistency and tensions found for current jet quenching modeling with hadron and reconstructed jet data over a wide range in kinematics and $\sqrt{s_{\text{NN}}}$. This analysis represents the next step in the program of comprehensive analysis of jet quenching phenomenology and its constraint of properties of the QGP., Comment: 6 pages, 2 figures, contribution to the Quark Matter 2022 proceedings
60. Hard Jet Substructure in a Multi-stage Approach
- Author
-
Tachibana, Y., Kumar, A., Majumder, A., Angerami, A., Arora, R., Bass, S. A., Cao, S., Chen, Y., Dai, T., Du, L., Ehlers, R., Elfner, H., Fan, W., Fries, R. J., Gale, C., He, Y., Heffernan, M., Heinz, U., Jacak, B. V., Jacobs, P. M., Jeon, S., Ji, Y., Kauder, K., Kasper, L., Ke, W., Kelsey, M., Kordell, M., Latessa, J., Lee, Y. -J, Liyanage, D., Lopez, A., Luzum, M., Mak, S., Mankolli, A., Martin, C., Mehryar, H., Mengel, T., Mulligan, J., Nattrass, C., Oliinychenko, D., Paquet, J. -F, Putschke, J. H., Roland, G., Schenke, B., Schwiebert, L., Sengupta, A., Shen, C., Silva, A., Sirimanna, C., Soeder, D., Soltz, R. A., Soudi, I., Staudenmaier, J., Strickland, M., Velkovska, J., Vujanovic, G., Wang, X. -N, Wolpert, R. L., and Wenbin Zhao(赵文彬)
- Subjects
Nuclear Theory (nucl-th) ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,Nuclear Theory ,FOS: Physical sciences ,Nuclear Experiment (nucl-ex) ,Nuclear Experiment ,High Energy Physics - Experiment - Abstract
We present predictions and postdictions for a wide variety of hard jet-substructure observables using a multi-stage model within the JETSCAPE framework. The details of the multi-stage model and the various parameter choices are described in [A. Kumar et al., arXiv:2204.01163]. A novel feature of this model is the presence of two stages of jet modification: a high virtuality phase (modeled using MATTER), where coherence effects diminish medium-induced radiation, and a lower virtuality phase (modeled using LBT), where parton splits are fully resolved by the medium as they endure multiple scattering induced energy loss. Energy loss calculations are carried out on event-by-event viscous fluid dynamic backgrounds constrained by experimental data. The uniformed and consistent descriptions of multiple experimental observables demonstrate the essential role of coherence effects and the multi-stage modeling of the jet evolution. Using the best choice of parameters from [A. Kumar et al., arXiv:2204.01163], and with no further tuning, we present calculations for the medium modified jet fragmentation function, the groomed jet momentum fraction $z_g$ and angular separation $r_g$ distributions, as well as the nuclear modification factor of groomed jets. These calculations provide accurate descriptions of published and preliminary data from experiments at RHIC and LHC. Furthermore, we provide predictions from the multi-stage model for future measurements at RHIC., 20 pages, 12 figures
61. Multi-scale evolution of charmed particles in a nuclear medium
- Author
-
Fan, W., Vujanovic, G., Bass, S. A., Majumder, A., Angerami, A., Arora, R., Cao, S., Chen, Y., Dai, T., Du, L., Ehlers, R., Elfner, H., Fries, R. J., Gale, C., He, Y., Heffernan, M., Heinz, U., Jacak, B. V., Jacobs, P. M., Jeon, S., Ji, Y., Kauder, K., Kasper, L., Ke, W., Kelsey, M., Kordell, M., Kumar, A., Latessa, J., Lee, Y. -J, Liyanage, D., Lopez, A., Luzum, M., Mak, S., Mankolli, A., Martin, C., Mehryar, H., Mengel, T., Mulligan, J., Nattrass, C., Oliinychenko, D., Paquet, J. -F, Putschke, J. H., Roland, G., Schenke, B., Schwiebert, L., Sengupta, A., Shen, C., Silva, A., Sirimanna, C., Soeder, D., Soltz, R. A., Soudi, I., Staudenmaier, J., Strickland, M., Yasuki Tachibana, Velkovska, J., Wang, X. -N, Wolpert, R. L., and Zhao, W.
62. Multisystem Bayesian constraints on the transport coefficients of QCD matter
- Author
-
Everett, D., Ke, W., Paquet, J.-F., Vujanovic, G., Bass, S. A., Du, L., Gale, C., Heffernan, M., Heinz, U., Liyanage, D., Luzum, M., Majumder, A., McNelis, M., Shen, C., Xu, Y., Angerami, A., Cao, S., Chen, Y., Coleman, J., Cunqueiro, L., Dai, T., Ehlers, R., Elfner, H., Fan, W., Fries, R. J., Garza, F., He, Y., Jacak, B. V., Jacobs, P. M., Jeon, S., Kim, B., Kordell, M., Kumar, A., Mak, S., Mulligan, J., Nattrass, C., Oliinychenko, D., Park, C., Putschke, J. H., Roland, G., Schenke, B., Schwiebert, L., Silva, A., Sirimanna, C., Soltz, R. A., Tachibana, Y., Wang, X.-N., and Wolpert, R. L.
- Subjects
13. Climate action ,7. Clean energy - Abstract
Physical review / C 103(5), 054904 (2021). doi:10.1103/PhysRevC.103.054904, We study the properties of the strongly coupled quark-gluon plasma with a multistage model of heavy-ion collisions that combines the TRENTo initial condition ansatz, free-streaming, viscous relativistic hydrodynamics, and a relativistic hadronic transport. A model-to-data comparison with Bayesian inference is performed, revisiting assumptions made in previous studies. The role of parameter priors is studied in light of their importance for the interpretation of results. We emphasize the use of closure tests to perform extensive validation of the analysis workflow before comparison with observations. Our study combines measurements from the Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider (RHIC), achieving a good simultaneous description of a wide range of hadronic observables from both colliders. The selected experimental data provide reasonable constraints on the shear and the bulk viscosities of the quark-gluon plasma at T≈ 150–250 MeV, but their constraining power degrades at higher temperatures, T≳250 MeV. Furthermore, these viscosity constraints are found to depend significantly on how viscous corrections are handled in the transition from hydrodynamics to the hadronic transport. Several other model parameters, including the free-streaming time, show similar model sensitivity, while the initial condition parameters associated with the TRENTo ansatz are quite robust against variations of the particlization prescription. We also report on the sensitivity of individual observables to the various model parameters. Finally, Bayesian model selection is used to quantitatively compare the agreement with measurements for different sets of model assumptions, including different particlization models and different choices for which parameters are allowed to vary between RHIC and LHC energies., Published by Inst., Woodbury, NY
63. The JETSCAPE framework
- Author
-
Putschke, J. H., Kauder, K., Khalaj, E., Angerami, A., Bass, S. A., Cao, S., Coleman, J., Cunqueiro, L., Dai, T., Du, L., Elfner, H., Everett, D., Fan, W., Fries, R. J., Gale, C., He, Y., Heinz, U., Jacak, B. V., Jacobs, P. M., Jeon, S., Ke, W., Kordell, M., Kumar, A., Luo, T., Majumder, A., Mcnelis, M., Mulligan, J., Nattrass, C., Oliinychenko, D., Pablos, D., Pang, L. -G, Park, C., Paquet, J. -F, Roland, G., Schenke, B., Schwiebert, L., Shen, C., Sirimanna, C., Soltz, R. A., Yasuki Tachibana, Vujanovic, G., Wang, X. -N, Wolpert, R. L., Xu, Y., and Yang, Z.
- Subjects
Nuclear Theory (nucl-th) ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,Nuclear Theory ,FOS: Physical sciences ,Nuclear Experiment (nucl-ex) ,Nuclear Experiment - Abstract
The JETSCAPE simulation framework is an overarching computational envelope for developing complete event generators for heavy-ion collisions. It allows for modular incorporation of a wide variety of existing and future software that simulates different aspects of a heavy-ion collision. The default JETSCAPE package contains both the framework, and an entire set of indigenous and third party routines that can be used to directly compare with experimental data. In this article, we outline the algorithmic design of the JETSCAPE framework, define the interfaces and describe the default modules required to carry out full simulations of heavy-ion collisions within this package. We begin with a description of the various physics elements required to simulate an entire event in a heavy-ion collision, and distribute these within a flowchart representing the event generator and statistical routines for comparison with data. This is followed by a description of the abstract class structure, with associated members and functions required for this flowchart to work. We then define the interface that will be required for external users of JETSCAPE to incorporate their code within this framework and to modify existing elements within the default distribution. We conclude with a discussion of some of the physics output for both $p$-$p$ and $A$-$A$ collisions from the default distribution, and an outlook towards future releases. In the appendix, we discuss various architectures on which this code can be run and outline our benchmarks on similar hardware., Comment: 93 pages, 13 figures
64. Comprehensive Study of Multi-scale Jet-medium Interaction
- Author
-
Tachibana, Y., Angerami, A., Arora, R., Bass, S. A., Cao, S., Chen, Y., Dai, T., Lipei Du, Ehlers, R., Elfner, H., Fan, W., Fries, R. J., Gale, C., He, Y., Heffernan, M., Heinz, U., Jacak, B. V., Jacobs, P. M., Jeon, S., Ji, Y., Kasper, L., Ke, W., Kelsey, M., Kordell, M., Kumar, A., Latessa, J., Lee, Y. -J, Liyanage, D., Lopez, A., Luzum, M., Mak, S., Majumder, A., Mankolli, A., Martin, C., Mehryar, H., Mengel, T., Mulligan, J., Nattrass, C., Oliinychenko, D., Paquet, J. -F, Putschke, J. H., Roland, G., Schenke, B., Schwiebert, L., Sengupta, A., Shen, C., Silva, A., Sirimanna, C., Soeder, D., Soltz, R. A., Soudi, I., Staudenmaier, J., Strickland, M., Velkovska, J., Vujanovic, G., Wang, X. -N, Wolpert, R. L., and Zhao, W.
- Subjects
Nuclear Theory (nucl-th) ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,Nuclear Theory ,FOS: Physical sciences - Abstract
We explore jet-medium interactions at various scales in high-energy heavy-ion collisions using the JETSCAPE framework. The physics of the multi-stage modeling and the coherence effect at high virtuality is discussed through the results of multiple jet and high-$p_{\mathrm{T}}$ particle observables, compared with experimental data. Furthermore, we investigate the jet-medium interaction involved in the hadronization process., 6 pages, 5 figures, contribution to the Quark Matter 2022 proceedings
65. Phenomenological Constraints on the Transport Properties of QCD Matter with Data-Driven Model Averaging
- Author
-
Everett, D., Ke, W., Paquet, J.-F., Vujanovic, G., Bass, S. A., Du, L., Gale, C., Heffernan, M., Heinz, U., Liyanage, D., Luzum, M., Majumder, A., McNelis, M., Shen, C., Xu, Y., Angerami, A., Cao, S., Chen, Y., Coleman, J., Cunqueiro, L., Dai, T., Ehlers, R., Elfner, H., Fan, W., Fries, R. J., Garza, F., He, Y., Jacak, B. V., Jacobs, P. M., Jeon, S., Kim, B., Kordell, M., Kumar, A., Mak, S., Mulligan, J., Nattrass, C., Oliinychenko, D., Park, C., Putschke, J. H., Roland, G., Schenke, B., Schwiebert, L., Silva, A., Sirimanna, C., Soltz, R. A., Tachibana, Y., Wang, X.-N., and Wolpert, R. L.
- Subjects
13. Climate action ,7. Clean energy - Abstract
Physical review letters 126(24), 242301 (2021). doi:10.1103/PhysRevLett.126.242301, Using combined data from the Relativistic Heavy Ion and Large Hadron Colliders, we constrain the shear and bulk viscosities of quark-gluon plasma (QGP) at temperatures of ∼150–350 MeV. We use Bayesian inference to translate experimental and theoretical uncertainties into probabilistic constraints for the viscosities. With Bayesian model averaging we propagate an estimate of the model uncertainty generated by the transition from hydrodynamics to hadron transport in the plasma’s final evolution stage, providing the most reliable phenomenological constraints to date on the QGP viscosities., Published by APS, College Park, Md.
66. Inclusive Jet and Hadron Suppression in a Multi-Stage Approach
- Author
-
Kumar, A., Tachibana, Y., Sirimanna, C., Vujanovic, G., Cao, S., Majumder, A., Chen, Y., Du, L., Ehlers, R., Everett, D., Fan, W., He, Y., Mulligan, J., Park, C., Angerami, A., Arora, R., Bass, S. A., Dai, T., Elfner, H., Fries, R. J., Gale, C., Garza, F., Heffernan, M., Heinz, U., Jacak, B. V., Jacobs, P. M., Jeon, S., Kauder, K., Kasper, L., Ke, W., Kelsey, M., Kim, B., Kordell, M., Latessa, J., Lee, Y. -J, Liyanage, D., Lopez, A., Luzum, M., Mak, S., Mankolli, A., Martin, C., Mehryar, H., Mengel, T., Nattrass, C., Oliinychenko, D., Paquet, J. -F, Putschke, J. H., Roland, G., Schenke, B., Schwiebert, L., Sengupta, A., Chun Shen, Silva, A., Soeder, D., Soltz, R. A., Staudenmaier, J., Strickland, M., Velkovska, J., Wang, X. -N, and Wolpert, R. L.
67. Production and elliptic flow of dileptons and photons in a matrix model of the quark-gluon plasma.
- Author
-
Gale C, Hidaka Y, Jeon S, Lin S, Paquet JF, Pisarski RD, Satow D, Skokov VV, and Vujanovic G
- Abstract
We consider a nonperturbative approach to the thermal production of dileptons and photons at temperatures near the critical temperature in QCD. The suppression of colored excitations at low temperature is modeled by including a small value of the Polyakov loop, in a "semi"-quark-gluon plasma (QGP). Comparing the semi-QGP to the perturbative QGP, we find a mild enhancement of thermal dileptons. In contrast, to leading logarithmic order in weak coupling there are far fewer hard photons from the semi-QGP than the usual QGP. To illustrate the possible effects on photon and dilepton production in heavy-ion collisions, we integrate the rate with a simulation using ideal hydrodynamics. Dileptons uniformly exhibit a small flow, but the strong suppression of photons in the semi-QGP tends to weight the elliptical flow of photons to that generated in the hadronic phase.
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.