Walter, Marc D., Matsunaga, Philip T., Burns, Carol J., Maron, Laurent, Andersen, Richard A., Technische Universität Braunschweig = Technical University of Braunschweig [Braunschweig], University of California [Berkeley] (UC Berkeley), University of California (UC), Laboratoire de physique et chimie des nano-objets (LPCNO), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Univ Calif Berkeley, Dept Chem, Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)
bibtex: ISI:000418109700009 bibtex\location:'1155 16TH ST, NW, WASHINGTON, DC 20036 USA',publisher:'AMER CHEMICAL SOC',type:'Article',affiliation:'Andersen, RA (Reprint Author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Chem, Berkeley, CA 94720 USA. Andersen, RA (Reprint Author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. Walter, Marc D.; Matsunaga, Philip T.; Burns, Carol J.; Andersen, Richard A., Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Chem, Berkeley, CA 94720 USA. Walter, Marc D.; Matsunaga, Philip T.; Burns, Carol J.; Andersen, Richard A., Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. Walter, Marc D., Tech Univ Carolo Wilhelmina Braunschweig, Inst Anorgan & Analyt Chem, Hagenring 30, D-38106 Braunschweig, Germany. Maron, Laurent, Univ Toulouse, INSA UPS LPCNO, 135 Ave Rangueil, F-31077 Toulouse, France. Maron, Laurent, Univ Toulouse, CNRS LPCNO, 135 Ave Rangueil, F-31077 Toulouse, France.','author-email':'raandersen@lbl.gov',da:'2018-12-05','doc-delivery-number':'FQ1IG',eissn:'1520-6041','funding-acknowledgement':'Office of Science, Office of Basic Energy Sciences (OBES), of the U.S. Department of Energy [DE-AC020-5CH11231]; Fannie and John Hertz Foundation; Alexander von Humboldt Foundation; CalMip','funding-text':'This work was supported by the Director, Office of Science, Office of Basic Energy Sciences (OBES), of the U.S. Department of Energy under Contract No. DE-AC020-5CH11231. We thank Fred Hollander (at CHEXRAY, the UC Berkeley X-ray diffraction facility) for assistance with the crystallography. C.J.B. thanks the Fannie and John Hertz Foundation for a fellowship. R.A.A. acknowledges the Alexander von Humboldt Foundation for a reinvitation grant within the Humboldt Senior Research Award program. L.M. is grateful to the Alexander von Humboldt Foundation for a grant of experienced researcher and the Chinese Academy of Science. CalMip is acknowledged for a generous computational grant.','journal-iso':'Organometallics','keywords-plus':'C-H ACTIVATION; CRYSTAL-STRUCTURE; HYDRIDE COMPLEXES; DECAMETHYLYTTERBOCENE COMPLEXES; INTERMEDIATE-VALENCE; LANTHANIDE COMPLEXES; INCLUSION-COMPOUNDS; METHANE METATHESIS; METHYL COMPLEXES; LUTETIUM METHYL','number-of-cited-references':'83','research-areas':'Chemistry','researcherid-numbers':'Walter, Marc/E-4479-2012','times-cited':'3','unique-id':'ISI:000418109700009','usage-count-last-180-days':'4','usage-count-since-2013':'11','web-of-science-categories':'Chemistry, Inorganic & Nuclear; Chemistry, Organic'\; A new type of synthesis, referred to as oxidative methylation, is developed for [Cp*Yb-2](2)(mu-X) and [Cp*Yb-2](2)(mu-X)(X), where X = Me, using MeCu or Cp*2VMe as the methyl transfer reagent and Cp*Yb-2. The synthetic methodology is extended to other X derivatives such as the halides and BH4. Reaction of [Cp*Yb-2](2)(mu-Me)(Me) and H-2 yields the mixed-valent hydride [Cp*Yb-2](2)(mu-H), which eliminates H-2 on gentle heating, forming Cp*Yb-2. When Cp*2VX is replaced by Cp*2TiX, 1:1 adducts based upon Ti(III,d(1)) are isolated. The X-ray crystal structure of [Cp*Yb-2](mu-Me)[TiCp*(2)] shows that the methyl group bridges the two different decamethylmetallocene fragments in a near-linear fashion, a geometry that is likely to resemble the transition state of the single-electron-transfer precursor complex. A CASSCF computational study on the mixed-valent hydride [Cp*Yb-2](2)(mu-H) shows that the ground state is a spin doublet in which the hydride forms a symmetric bridge to both Yb atoms. The three spins forming the ground-state doublet are aligned as Yb(f(13)(alpha),(d(z2))(0))center dot center dot center dot H center dot center dot center dot Yb(f(13)(alpha),(d(z2))(1)(beta)), and the unpaired d electron is delocalized between the d(z2) orbitals of the two Yb centers via the hydride bridge using the sigma* orbital of the Yb(d(z2))-H bond. The first excited state lies 0.09 eV (725 cm(-1)) higher in energy and is a spin quartet in which the three spins are aligned as Yb(f(13)(alpha),(d(z2))(0))center dot center dot center dot H center dot center dot center dot Yb(f(13)(alpha),(d(z2))(1)(alpha)), also giving rise to delocalization of the d electron between the d(z2) orbitals of the two Yb centers. The second spin doublet resembles the Lewis structure with an asymmetric mu-H bridge in which the Yb(II) metallocene has a closed-shell electronic configuration and is approximately 0.15 eV (1210 cm(-1)) higher in energy than the ground-state delocalized open-shell doublet. The electronic structure of the mixed-valent methyl is closely related to that of the hydride, but the methyl group is localized on the Cp*Yb-2(III) fragment. Electronic energies (Delta E) computed at the DFT (B3PW91) level of theory provide insights into the thermochemistry of the formation and decomposition of [Cp*Yb-2](2)(mu-H). The BDE for Yb-H is ca. 15 kcal/mol stronger than that for the corresponding Yb-Me in the monomeric metallocenes. In contrast, formation of [Cp*Yb-2](2)(mu-CH3) is ca. 60 kcal/mol more exothermic than the formation of [Cp*Yb-2](2)(mu-H). This difference is ascribed to enhanced intramolecular steric repulsion between the Cp*Yb-2 moieties in the linear Yb-H-Yb unit.