51. Characterizing the Chemical Structure of Ti3C2Tx MXene by Angle-Resolved XPS Combined with Argon Ion Etching
- Author
-
Yangfan Lu, Dongsheng Li, and Fu Liu
- Subjects
MXene ,Ti3C2Tx ,XPS ,angle-resolved ,ion etching ,Technology ,Microscopy ,QC120-168.85 ,QH201-278.5 ,Engineering (General). Civil engineering (General) ,Article ,TK1-9971 ,Descriptive and experimental mechanics ,General Materials Science ,Electrical engineering. Electronics. Nuclear engineering ,TA1-2040 - Abstract
Angle-resolved XPS combined with argon ion etching was used to characterize the surface functional groups and the chemical structure of Ti3C2Tx MXene. Survey scanning obtained on the sample surface showed that the sample mainly contains C, O, Ti and F elements, and a little Al element. Analyzing the angle-resolved narrow scanning of these elements indicated that a layer of C and O atoms was adsorbed on the top surface of the sample, and there were many O or F related Ti bonds except Ti–C bond. XPS results obtained after argon ion etching indicated staggered distribution between C–Ti–C bond and O–Ti–C, F–Ti bond. It is confirmed that Ti atoms and C atoms were at the center layer of Ti3C2Tx MXene, while O atoms and F atoms were located at both the upper and lower surface of Ti3C2 layer acting as surface functional groups. The surface functional groups on the Ti3C2 layer were determined to include O2−, OH−, F− and O−–F−, among which F atoms could also desorb from Ti3C2Tx MXene easily. The schematic atomic structure of Ti3C2Tx MXene was derived from the analysis of XPS results, being consistent with theoretical chemical structure and other experimental reports. The results showed that angle-resolved XPS combing with argon ion etching is a good way to analysis 2D thin layer materials.
- Published
- 2022